

ZeroC,

Ice
wi
Student

Version
Novemb
© ZeroC

Inc.

e Pr
th J
t Workbook

 2.0.0
ber 2010
C, Inc.

rogr
Java

ram
a

mminng

Disclaimer

Copyright © 2005-2010 ZeroC, Inc. i

Disclaimer
Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book
and ZeroC was aware of the trademark claim, the designations have been printed
in initial caps or all caps.

The authors and publisher have taken care in the preparation of this book, but
make no expressed or implied warranty of any kind and assume no responsibility
for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or
programs contained herein.

Contents

Copyright © 2005-2010 ZeroC, Inc. ii

Contents

1 INTRODUCTION TO ICE ... 1.2
1-1 Lesson Overview .. 1.2
1-2 What is Ice? .. 1.3
1-3 Clients and Servers .. 1.4
1-4 Ice Objects ... 1.5
1-5 Proxies ... 1.7
1-6 Stringified Proxies .. 1.8
1-7 Servants ... 1.10
1-8 At-Most-Once Semantics ... 1.12
1-9 Method Invocation and Dispatch .. 1.14
1-10 Client and Server Structure .. 1.16
1-11 Ice Services .. 1.18

2 THE SLICE INTERFACE DEFINITION LANGUAGE .. 2.2
2-1 Lesson Overview .. 2.2
2-2 What is Slice? ... 2.3
2-3 Single-Language Development .. 2.4
2-4 Cross-Language Development .. 2.5
2-5 Slice Source Files... 2.6
2-6 Comments and Keywords .. 2.7
2-7 Identifiers .. 2.8
2-8 Modules .. 2.10
2-9 The Ice Modules ... 2.11
2-10 Basic Slice Types ... 2.12
2-11 Enumerations ... 2.14
2-12 Structures ... 2.15
2-13 Sequences ... 2.17
2-14 Dictionaries ... 2.18
2-15 Constants and Literals ... 2.19
2-16 Interfaces .. 2.21
2-17 Operations and Parameters ... 2.23
2-18 idempotent Operations ... 2.24
2-19 User Exceptions ... 2.26
2-20 Exception Inheritance ... 2.27
2-21 Ice Run-Time Exceptions ... 2.29
2-22 Run-Time Exceptions Raised by the Server .. 2.32
2-23 Proxies ... 2.34
2-24 Interface Inheritance .. 2.36
2-25 Interface Inheritance Limitations .. 2.38
2-26 Implicit Inheritance from Object .. 2.39
2-27 Self-Referential Interfaces & Forward Declarations ... 2.40
2-28 Classes ... 2.41
2-29 Passing Classes as Parameters and Slicing ... 2.42
2-30 Classes as Unions.. 2.44
2-31 Self-Referential Classes ... 2.45
2-32 Classes with Operations .. 2.47
2-33 Classes Implementing Interfaces ... 2.48
2-34 Class Inheritance Limitations ... 2.49
2-35 Pass-by-Value Versus Pass-by-Reference .. 2.50
2-36 Architectural Implications of Classes ... 2.51
2-37 Classes Versus Structures ... 2.52
2-38 The :: Scope Qualification Operator ... 2.53
2-39 Type Identifiers ... 2.55

Contents

Copyright © 2005-2010 ZeroC, Inc. iii

2-40 Operations on Object ... 2.56
2-41 Local Types .. 2.58
2-42 Metadata .. 2.59
2-43 The slice2java Compiler ... 2.60

3 ASSIGNMENT 1: CREATING SLICE DEFINITIONS .. 3.2
3-1 Exercise Overview.. 3.2
3-2 A Simple Remote File System ... 3.3
3-3 What You Need to Do .. 3.4
3-4 Slice Definitions for a Simple Remote File System .. 3.5

4 CLIENT-SIDE SLICE-TO-JAVA MAPPING .. 4.2
4-1 Lesson Overview .. 4.2
4-2 Client-Side Java Mapping .. 4.3
4-3 Initializing the Ice Run Time ... 4.4
4-4 Mapping for Identifiers .. 4.5
4-5 Mapping for Modules .. 4.6
4-6 Mapping for Built-In Types ... 4.8
4-7 Mapping for Enumerations ... 4.9
4-8 Mapping for Structures ... 4.10
4-9 Mapping for Sequences ... 4.11
4-10 Custom Mapping for Sequences .. 4.12
4-11 Mapping for Dictionaries .. 4.13
4-12 Custom Mapping for Dictionaries ... 4.14
4-13 Mapping for Constants ... 4.15
4-14 Mapping for User Exceptions ... 4.16
4-15 Mapping for Run-Time Exceptions ... 4.18
4-16 Mapping for Interfaces ... 4.19
4-17 The Proxy Interface .. 4.21
4-18 Methods on Ice.ObjectPrx ... 4.23
4-19 Proxy Helpers ... 4.26
4-20 Mapping for Operations .. 4.28
4-21 Mapping for Return Values and In-Parameters ... 4.29
4-22 Mapping for Out-Parameters .. 4.30
4-23 Exception Handling .. 4.32
4-24 Mapping for Classes .. 4.34
4-25 Inheritance from Ice.Object ... 4.37
4-26 Abstract Classes .. 4.38
4-27 Class Factories ... 4.39
4-28 Factory Registration ... 4.41
4-29 Default Factory ... 4.42
4-30 Stringified Proxies .. 4.43
4-31 Compiling and Running a Client ... 4.45

5 ASSIGNMENT 2: CREATING AN ICE CLIENT .. 5.2
5-1 Exercise Overview.. 5.2
5-2 Creating a Client for the Remote Filesystem ... 5.3
5-3 What You Need to Do .. 5.4
5-4 The main Method .. 5.6
5-5 The listRecursive Method ... 5.8

6 SERVER-SIDE SLICE-TO-JAVA MAPPING .. 6.2
6-1 Lesson Overview .. 6.2
6-2 Server-Side Java Mapping ... 6.3
6-3 Initializing the Ice Run Time ... 6.4

Contents

Copyright © 2005-2010 ZeroC, Inc. iv

6-4 Server-Side Initialization .. 6.5
6-5 Mapping for Interfaces ... 6.6
6-6 Mapping for Interfaces (cont. 1) ... 6.8
6-7 Mapping for Parameters ... 6.9
6-8 Throwing Exceptions .. 6.10
6-9 Tie Classes ... 6.11
6-10 Creating an Object Adapter .. 6.13
6-11 Object Adapter States .. 6.14
6-12 Controlling Adapter State ... 6.15
6-13 Object Identity .. 6.16
6-14 Stringified Object Identity ... 6.17
6-15 The Active Servant Map (ASM) .. 6.18
6-16 Activating Servants .. 6.19
6-17 Creating Proxies ... 6.20
6-18 The Ice::Application Class ... 6.21
6-19 Shutdown Hook .. 6.23
6-20 Compiling and Running a Server ... 6.25

7 ASSIGNMENT 3: CREATING AN ICE SERVER .. 7.2
7-1 Exercise Overview.. 7.2
7-2 Creating a Server for the Remote Filesystem .. 7.3
7-3 What You Need to Do .. 7.4
7-4 The server Class ... 7.6
7-5 The Directory Class ... 7.8
7-6 The FileI Class ... 7.10

8 PROPERTIES AND CONFIGURATION .. 8.2
8-1 Lesson Overview .. 8.2
8-2 Ice Properties ... 8.3
8-3 Configuration Files ... 8.4
8-4 Setting Ice Properties on the Command Line .. 8.5
8-5 Ice Initialization ... 8.6
8-6 Reading Properties Programmatically.. 8.7
8-7 Using InitializationData .. 8.9
8-8 Command-Line Application Properties .. 8.10
8-9 Commonly-Used Ice Properties ... 8.12
8-10 Converting Properties to Proxies ... 8.13
8-11 Object Adapter Properties .. 8.14

9 ASSIGNMENT 4: USING PROPERTIES .. 9.2
9-1 Exercise Overview.. 9.2
9-2 Adding an Application-Specific Property .. 9.3
9-3 What You Need to Do .. 9.4
9-4 Using Properties ... 9.6

10 MULTI-THREADED ICE .. 10.2
10-1 Lesson Overview .. 10.2
10-2 Ice Threading Model .. 10.3
10-3 Thread Pool Configuration ... 10.4
10-4 Thread Pool Configuration (cont. 1) ... 10.5
10-5 Thread Pool Configuration (cont. 2) ... 10.6
10-6 Thread Safety ... 10.7

11 ASSIGNMENT 5: THREAD SAFETY .. 11.2

Contents

Copyright © 2005-2010 ZeroC, Inc. v

11-1 Exercise Overview.. 11.2
11-2 Thread Safety ... 11.3
11-3 What You Need to Do .. 11.4
11-4 Server Modifications ... 11.6
11-5 Client Modifications .. 11.10

12 OBJECT LIFE CYCLE ... 12.2
12-1 Lesson Overview .. 12.2
12-2 Object Creation .. 12.3
12-3 Object Creation and Thread Safety .. 12.5
12-4 The Current Object ... 12.6
12-5 Object Destruction .. 12.8
12-6 Implementing Object Destruction ... 12.9
12-7 Object Destruction and Thread Safety ... 12.11
12-8 When to Remove Servant State? ... 12.13
12-9 Object Identity and Uniqueness ... 12.15
12-10 Object Identity and Uniqueness (cont. 1) ... 12.16
12-11 Object Identity and Uniqueness (cont. 2) ... 12.17
12-12 Uniqueness Recommendations ... 12.19
12-13 Dealing with Stale Objects ... 12.20
12-14 Dealing with Stale Objects (cont. 1) ... 12.21
12-15 Dealing with Stale Objects (cont. 2) ... 12.23
12-16 Dealing with Stale Objects (cont. 3) ... 12.24
12-17 Dealing with Stale Objects (cont. 4) ... 12.28
12-18 Dealing with Stale Objects (cont. 5) ... 12.29
12-19 Dealing with Stale Objects (cont. 6) ... 12.31
12-20 Dealing with Stale Objects (cont. 7) ... 12.33

13 ASSIGNMENT 6: OBJECT LIFE CYCLE ... 13.2
13-1 Exercise Overview.. 13.2
13-2 Life Cycle .. 13.3
13-3 What You Need to Do .. 13.4
13-4 Thread Safety Modifications ... 13.6
13-5 createDir Implementation .. 13.8
13-6 createFile Implementation .. 13.10
13-7 DirectoryI.destroy Implementation .. 13.12
13-8 FileI.destroy Implementation .. 13.14

14 GLACIER2 ... 14.2
14-1 Lesson Overview .. 14.2
14-2 Running an Ice Server Behind a Firewall ... 14.3
14-3 Glacier2 .. 14.5
14-4 Glacier2 as a Firewall ... 14.6
14-5 Glacier2 Behind a Firewall ... 14.7
14-6 Running Glacier2.. 14.8
14-7 Glacier2 Configuration ... 14.9
14-8 Glacier2 Sessions .. 14.10
14-9 Client Configuration .. 14.12
14-10 Creating a Password File ... 14.14
14-11 Custom Authentication ... 14.15
14-12 The Admin Interface ... 14.16
14-13 Custom Object Identities .. 14.17
14-14 Session Timeouts ... 14.18
14-15 Explicit Session Management .. 14.19
14-16 Supporting Callbacks ... 14.21

Contents

Copyright © 2005-2010 ZeroC, Inc. vi

14-17 Supporting Callbacks (cont. 1) ... 14.22
14-18 Supporting Callbacks (cont. 2) ... 14.24
14-19 Helper Classes ... 14.25
14-20 The Glacier2.Application Class ... 14.26
14-21 The Glacier2.Application Class (cont. 1) .. 14.28

15 ASSIGNMENT 7: USING GLACIER2 ... 15.2
15-1 Exercise Overview.. 15.2
15-2 Using Glacier2 .. 15.3
15-3 What You Need to Do .. 15.4
15-4 Client Modifications .. 15.5
15-5 Client Configuration .. 15.7
15-6 Glacier2 Configuration ... 15.8
15-7 Glacier2 Password File .. 15.9

16 ICEGRID .. 16.2
16-1 Lesson Overview .. 16.2
16-2 IceGrid .. 16.3
16-3 IceGrid Components .. 16.5
16-4 IceGrid Architecture.. 16.6
16-5 Indirect Proxies ... 16.7
16-6 Client Configuration .. 16.8
16-7 Registry Endpoints ... 16.9
16-8 Registry Configuration .. 16.10
16-9 Node Configuration .. 16.11
16-10 Starting an IceGrid Node .. 16.13
16-11 Starting the Registry ... 16.14
16-12 Server Configuration .. 16.15
16-13 Server Configuration (cont. 1) .. 16.17
16-14 Server Configuration (cont. 2) .. 16.18
16-15 Server Configuration (cont. 3) .. 16.19
16-16 Server Configuration (cont. 4) .. 16.20
16-17 Server Configuration (cont. 5) .. 16.21
16-18 Command-Line Administration ... 16.22
16-19 icegridadmin Application Commands ... 16.23
16-20 icegridadmin Node Commands .. 16.24
16-21 icegridadmin Server Commands .. 16.25
16-22 icegridadmin Server Commands (cont. 1) .. 16.26
16-23 icegridadmin Server Commands (cont. 2) .. 16.27
16-24 Server Activation and Deactivation .. 16.28
16-25 The Process Object .. 16.29
16-26 Server Environment ... 16.30
16-27 Server Code Changes .. 16.31
16-28 The Graphical Admin Tool ... 16.32
16-29 Well-Known Proxies ... 16.34
16-30 Well-Known Proxies (cont. 1) ... 16.36
16-31 Security Considerations ... 16.37
16-32 Troubleshooting .. 16.38
16-33 Other Features ... 16.39

17 ASSIGNMENT 8: USING ICEGRID ... 17.2
17-1 Exercise Overview.. 17.2
17-2 Using IceGrid .. 17.3
17-3 What You Need to Do .. 17.4
17-4 Registry Configuration .. 17.6

Contents

Copyright © 2005-2010 ZeroC, Inc. vii

17-5 Node Configuration .. 17.7
17-6 Deployment Descriptor ... 17.8
17-7 Admin Configuration ... 17.9
17-8 Server Source Modification .. 17.10
17-9 Client Modification .. 17.12

18 THE ICE RUN TIME IN DETAIL .. 18.2
18-1 Lesson Overview .. 18.2
18-2 The Ice::Communicator Interface .. 18.3
18-3 The Ice::Communicator Interface (cont. 1) .. 18.5
18-4 Creating a Communicator .. 18.7
18-5 Object Adapters.. 18.8
18-6 Servant Locators .. 18.9
18-7 Threading Guarantees for Servant Locators .. 18.11
18-8 Servant Locator Registration .. 18.12
18-9 Call Dispatch Rules .. 18.13
18-10 Implementing Servant Locators ... 18.14
18-11 Implementing locate .. 18.15
18-12 Information Provided to locate .. 18.17
18-13 Lazy Initialization .. 18.19
18-14 Creating Proxies ... 18.21
18-15 Default Servants ... 18.22
18-16 Default Servants (cont. 1) .. 18.24
18-17 Default Servants (cont. 2) .. 18.26
18-18 Hybrid Approaches and Caching ... 18.27
18-19 Evictors ... 18.28
18-20 Evictors (cont. 1) .. 18.29
18-21 Evictors (cont. 2) .. 18.30
18-22 Evictors (cont. 3) .. 18.31
18-23 Evictor Implementation ... 18.32
18-24 Evictor Implementation (cont. 1) .. 18.34
18-25 Using EvictorBase ... 18.39

19 LICENSE .. 19.1

Ice Pro
Studen

Copyr

1

ogramming wit
nt Workbook

ight © 2005-20

 In

th Java

010 ZeroC, Inc.

ntro

.

oductioon to Icee

Introduction to Ice Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 1.2

1 Introduction to Ice

1-1 Lesson Overview

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-1

Lesson Overview
• This lesson covers:

– the motivation for using Ice

– the fundamentals of the Ice architecture

– the Ice object model

• This lesson also provides an overview of the major Ice
components (including some components not covered in
this course).

• By the end of this lesson, you will have a basic
understanding of the Ice architecture and how Ice helps
you to develop distributed applications.

Notes:

This lesson covers the motivation for using Ice, the fundamentals of the Ice architecture,
and the Ice object model. The lesson also provides an overview of the major Ice
components (including components not covered in this course).

1-1-1 Lesson Objectives
By the completion of this lesson, you will have a basic understanding of the Ice
architecture and how Ice helps you to develop distributed applications.

Introduction to Ice What is Ice?

Copyright © 2005-2010 ZeroC, Inc. 1.3

1-2 What is Ice?

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-2

What is Ice?
• An object-oriented distributed middleware platform.

• Ice includes:
– object-oriented RPC mechanism

– language-neutral specification language (Slice)

– language mappings for various languages: C++, Java, C#, Python,
Objective-C, Ruby and PHP (Ruby and PHP for the client-side only)

– support for different transports (TCP, SSL, UDP) with highly-efficient
protocol

– external services (server activation, firewall traversal, etc.)

– integrated persistence (Freeze)

– threading support

Notes:

Ice (Internet Communications Engine) is an object-oriented middleware platform. It
supports a variety of operating systems, compilers, and programming languages and
allows you to create heterogeneous distributed applications. So Ice allows you to easily
create distributed applications that run on different operating systems and are written in
different languages. Ice allows these applications to seamlessly interoperate.

A specification language (Slice) allows you to define types and interfaces used by your
applications, regardless of what languages you use to implement applications. A compiler
then translates such language-independent specifications into a language-specific API.

The generated API takes care of many of the communications chores that you would
otherwise have to implement yourself. In addition, Ice supports not only TCP, but also
SSL and UDP transports. A plug-in interface allows you to add support for other
transports without having to modify the Ice source code.

Ice provides a number of services that implement commonly-required functionality, such
as server-activation on demand, firewall traversal, and persistence.

The Ice run time is fully threaded and (for C++) provides a thread-abstraction library that
helps you write threaded code that is source-code portable for both Windows and UNIX
environments.

Introduction to Ice Clients and Servers

Copyright © 2005-2010 ZeroC, Inc. 1.4

1-3 Clients and Servers

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-3

Clients and Servers
A client–server system is any software system in which different
parts of the system cooperate on an overall task.

– A server is an entity that, on request, provides a service (such as a
computation) to clients. Servers are passive.

– A client is an entity that requests services from servers.
Clients are active.

– Client and server often run on separate machines, but might also
run on the same machine or be linked into a single process.

Frequently, clients and servers are not “pure” clients and servers.

– A server might act as a client, and a client might act a server.
– Client and server are therefore roles that have a well-defined

meaning only for the duration of a single request. The initiating side
is, by definition, the client; the responding side is, by definition, the
server.

Notes:

The terms client and server are not firm designations for particular parts of an
application; rather, they denote roles that are taken by parts of an application for the
duration of a request:

 Clients are active entities. They issue requests for service to servers.
 Servers are passive entities. They provide services in response to client

requests.
Frequently, servers are not “pure” servers, in the sense that they never issue requests and
only respond to requests. Instead, servers often act as a server on behalf of some client
but, in turn, act as a client to another server in order to satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only request service
from an object. Instead, clients are frequently client–server hybrids.

Example: A client might start a long-running operation on a server; as part of starting the
operation, the client can provide a callback object to the server that is used by the server
to notify the client when the operation is complete. In that case, the client acts as a client
when it starts the operation, and as a server when it is notified that the operation is
complete. Such role reversal is common in many systems, so, frequently, client–server
systems could be more accurately described as peer-to-peer systems.

Introduction to Ice Ice Objects

Copyright © 2005-2010 ZeroC, Inc. 1.5

1-4 Ice Objects

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-4

Ice Objects
• An Ice object is a conceptual entity, that is, an

abstraction.

• An Ice object:
– can exist in the local or a remote address space

– responds to operation invocations

– can have multiple redundant instantiations

– has one or more interfaces (facets), and has a single
most-derived default interface (the default facet)

– provides operations that can accept in-parameters, and
can return out-parameters and/or a return value

– has a unique object identity

Notes:

An Ice object is a conceptual entity, or abstraction. It can be characterized by the
following points:

 An Ice object is an entity in the local or a remote address space that can respond
to client requests.

 A single Ice object can be instantiated in a single server or, redundantly, in
multiple servers. If an object has multiple simultaneous instantiations, it is still a
single Ice object.

 Each Ice object has one or more interfaces. An interface is a collection of named
operations that are supported by an object. Clients issue requests by invoking
operations.

An operation has zero or more parameters as well as a return value. Parameters
and return values have a specific type. Parameters are named and have a
direction: in-parameters are initialized by the client and passed to the server; out-
parameters are initialized by the server and passed to the client. (The return value
is simply a special out-parameter.)

Introduction to Ice Ice Objects

Copyright © 2005-2010 ZeroC, Inc. 1.6

 An Ice object has a distinguished interface, known as its main interface. In
addition, an Ice object can provide zero or more alternate interfaces, known as
facets. Clients can select among the facets of an object to choose the interface
they want to work with.

 Each Ice object has a unique object identity. An object’s identity is an identifying
value that distinguishes the object from all other objects. The Ice object model
assumes that object identities are globally unique, that is, no two objects within
an Ice communication domain can have the same object identity.

In practice, you need not use object identities that are globally unique, such as
UUIDs, only identities that do not clash with any other identity within your
domain of interest.

Introduction to Ice Proxies

Copyright © 2005-2010 ZeroC, Inc. 1.7

1-5 Proxies

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-5

Proxies
• Clients contact Ice objects via proxies.

• A proxy is a handle that uniquely denotes an Ice object.

• A proxy is the local ambassador for a (possibly remote)
Ice object.

• When a client invokes an operation on a proxy, the Ice
run time:
1. Locates the Ice object

2. Activates the object’s implementation within the server

3. Transmits in-parameters to the object

4. Waits for the operation to complete

5. Returns any out-parameters and the return value to the client
(or an exception in case of an error)

Notes:

Proxies are handles that clients use to access Ice objects. You can think of a proxy as akin
to a Java reference, except that a proxy can denote an object in a remote address space.
When a client invokes an operation on a proxy, the Ice run time takes care of locating the
object’s server1, instantiating the object if necessary, and transmitting parameters
between client and server.

A proxy encapsulates all the necessary information for this sequence of steps to take
place. In particular, a proxy contains:

 addressing information that allows the client-side run time to contact the correct
server,

 an object identity that identifies which particular object in the server is the target
of a request,

 an optional facet identifier that determines which particular facet of an object the
proxy refers to.

1 Using the external IceGrid service, a proxy invocation can also cause the Ice object’s server to be started
automatically. See Chapter 16 for more information on IceGrid.

Introduction to Ice Stringified Proxies

Copyright © 2005-2010 ZeroC, Inc. 1.8

1-6 Stringified Proxies

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-6

Stringified Proxies
• Proxies can be converted to and from strings.

SimplePrinter:default -h host.xyz.com -p 10000

• This is a proxy for an object with identity SimplePrinter.
• The object’s server runs on host.xyz.com and listens on port

10000 for incoming requests.
• The server can be contacted using the configured default protocol.

(If no default protocol is configured, the protocol defaults to TCP).
• Because such a proxy directly contains the endpoint at which the

server can be found, it is known as a direct proxy. The general form
of stringified direct proxies is:
<identity>:<endpoint>[:<endpoint>...]

• Endpoints have the general form:
<protocol> [-h <host>] [-p <port>] [-t timeout] [-z]

Notes:

Proxies can be converted to and from strings. No part of a proxy is opaque; if a client
knows the identity of an Ice object, and knows on which host and port the object’s server
listens, the client can create a proxy to that Ice object at any time.

Direct proxies contain the identity of the Ice object, as well as the endpoint(s) at which
the server listens. If a proxy contains multiple endpoints, the Ice run time will use one of
these endpoints to contact the server. This provides redundancy: invocations on the object
fail only if none of the object’s endpoints are functional.

The protocol identifier of an endpoint can be default, in which case the configured
default protocol will be used (TCP if no default protocol is configured). The protocol can
also be specified explicitly as tcp, ssl, or udp.

The -h option specifies the host on which the server runs (and defaults to the local host if
omitted).

The -p option specifies the port on which the server listens.

The -t option can be used to set a timeout that causes operation invocations to return
with an exception if the operation does not complete within the specified number of
seconds.

The -z option specifies that protocol compression is to be used for invocations via this
proxy.

Introduction to Ice Stringified Proxies

Copyright © 2005-2010 ZeroC, Inc. 1.9

Note: UDP endpoints support a few additional options—consult the Ice manual for
details.

Introduction to Ice Servants

Copyright © 2005-2010 ZeroC, Inc. 1.10

1-7 Servants

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-7

Servants
A servant is a server-side programming-language artifact that
provides the concrete representation of an abstract Ice object.

Servants are said to incarnate Ice objects.
– Typically, servants are object instances with methods that

correspond to the operations supported by an Ice object.

– Servants are written by you, the developer.

– When a client invokes an operation, the Ice run time takes care of
invoking the corresponding method on the servant.

– The method bodies on a servant provide the behavior of the
corresponding Ice object.

– A single servant can incarnate a single Ice object, or simultaneously
incarnate several Ice objects.

– A single Ice object can have multiple servants (typically in different
servers, for redundancy).

Notes:

An Ice object is a conceptual entity that has a type, identity, and addressing information.
However, client requests ultimately must end up with a concrete server-side processing
entity that can provide the behavior for an operation invocation. To put this differently, a
client request must ultimately end up executing code inside the server.

The server-side artifact that provides behavior for operation invocations is known as a
servant. A servant provides substance for (or incarnates) one or more Ice objects. In
practice, a servant is simply an instance of a class that is written by the server developer
and that is registered with the server-side run time as the servant for one or more Ice
objects. Methods on the class correspond to the operations on the Ice object’s interface
and provide the behavior for the operations.

A single servant can incarnate a single Ice object at a time or several Ice objects
simultaneously. If the former, the identity of the Ice object incarnated by the servant is
implicit in the servant. If the latter, the servant is provided the identity of the Ice object
with each request, so it can decide which object to incarnate for the duration of the
request.

Conversely, a single Ice object can have multiple servants. For example, we might choose
to create a proxy for an Ice object with two different addresses for different machines. In
that case, we will have two servers, with each server containing a servant for the same Ice
object.

Introduction to Ice Servants

Copyright © 2005-2010 ZeroC, Inc. 1.11

When a client invokes an operation on such an Ice object, the client-side run time sends
the request to exactly one server. In other words, multiple servants for a single Ice object
allow you to build redundant systems: the client-side run time attempts to send the
request to one server and, if that attempt fails, sends the request to the second server.
Only if the second attempt fails is an error reported back to the client-side application
code.

Introduction to Ice At-Most-Once Semantics

Copyright © 2005-2010 ZeroC, Inc. 1.12

1-8 At-Most-Once Semantics

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-8

At-Most-Once Semantics
The Ice run time guarantees at-most-once semantics.

A single operation invocation by a client is guaranteed to:
– either invoke the operation exactly once

– or invoke the operation not at all

It is impossible for a single invocation of a client to result in
the operation being invoked more than once.

At-most-once semantics are important if an operation is not
idempotent.

You can mark individual operations as idempotent to relax the
strict at-most-once semantics.

Notes:

Ice requests have at-most-once semantics by default: the Ice run time does its best to
deliver a request to the correct destination and, depending on the exact circumstances,
may retry a failed request. Ice guarantees that it will either deliver the request, or, if it
cannot deliver the request, inform the client with an appropriate exception; under no
circumstances is a request delivered twice, that is, retries are attempted only if it is known
that a previous attempt definitely failed.2

At-most-once semantics are important because they guarantee that operations that are not
idempotent can be used safely. An idempotent operation is an operation that, if executed
twice, has the same effect as if executed once.

Example: x = 1 is an idempotent operation. If we execute the operation twice, the end
result is the same as if we had executed it once. On the other hand, x++; is not
idempotent. If we execute the operation twice, the end result is not the same as if we had
executed it once.

2 This guarantee does not hold for UDP invocations, due to the nature of UDP. (Duplicated UDP packets
can lead to violation of at-most-once semantics.)

Introduction to Ice At-Most-Once Semantics

Copyright © 2005-2010 ZeroC, Inc. 1.13

Ice permits you to mark operations as idempotent, which indicates to the Ice run time that
it is safe to violate at-most-once semantics. For such operations, the Ice run time uses a
more aggressive error recovery strategy that can result in an operation being executed
more than once.

This ability to relax at-most-once semantics allows us to build distributed systems that are
more robust in the presence of network failures. However, realistic systems also require
non-idempotent operations, so at-most-once semantics are a necessity even though they
make the system less robust in the presence of network failures.

Introduction to Ice Method Invocation and Dispatch

Copyright © 2005-2010 ZeroC, Inc. 1.14

1-9 Method Invocation and Dispatch

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-9

Method Invocation and Dispatch
Ice supports:

• Oneway and twoway synchronous method invocation

• Oneway and twoway asynchronous method invocation
(AMI)

• Batched oneway invocation

• Datagram invocation

• Batched datagram invocation

• Synchronous method dispatch

• Asynchronous method dispatch (AMD)

Notes:

Ice provides a rich set of invocation modes.

 Synchronous twoway invocation is the most common way to invoke a remote
operation: the client invokes the operation and blocks until the operation
completes.

 Asynchronous method invocation (AMI) allows the client to start a twoway
invocation, but the thread of control is returned to the client without waiting for
the operation to complete. In fact, Ice guarantees that such invocations never
block the calling thread. When the operation is complete, the client typically
receives the results via a callback.

 Oneway invocations apply only to operations that do not return anything (have
void return type, no out-parameters, and do not raise user exceptions). A
synchronous oneway invocation returns the thread of control as soon as the
invocation has been written to the client’s local transport, whereas an
asynchronous oneway invocation always returns the thread of control
immediately. (If the invocation fails in the server for some reason, the client is
not notified.)

 It is possible to group a number of oneway invocations into a batch and send
them all at once, instead of one after another. This reduces network overhead.

Introduction to Ice Method Invocation and Dispatch

Copyright © 2005-2010 ZeroC, Inc. 1.15

 Datagram invocations can be used for servers that provide UDP endpoints. Like
oneway invocations, datagram invocations can be made only on operations that
do not return anything. And, due to the nature of UDP, they are unreliable.

 As for oneway invocations, datagram invocations can be batched for efficiency.

On the server side, Ice supports:

 Synchronous method dispatch. Each client invocation ties up a server thread for
the duration of the operation. The operation completes when the corresponding
method in the server returns.

 Asynchronous method dispatch (AMD). The server can use fewer threads than
there are concurrent invocations to service these invocations.

Introduction to Ice Client and Server Structure

Copyright © 2005-2010 ZeroC, Inc. 1.16

1-10 Client and Server Structure

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-10

Client and Server Structure
Server ApplicationClient Application

Generated Code

Proxy
Code

Network

Ice API

Client Ice Core

Object
Adapter

Ice API

Server Ice Core

Skeleton

Ice API

Notes:

Both client and server consist of a mixture of application code, library code, and code
generated from Slice definitions:

 The Ice core contains the client- and server-side run-time support for remote
communication. Much of this code is concerned with the details of networking,
threading, byte ordering, and many other networking-related issues that we want
to keep away from application code. The Ice core is provided as a number of
libraries that client and server link with.

 The generic part of the Ice core (that is, the part that is independent of the
specific types you have defined in Slice) is accessed through the Ice API. You
use the Ice API to take care of administrative chores, such as initializing and
finalizing the Ice run time. The Ice API is identical for clients and servers
(although servers use a larger part of the API than clients).

 The proxy code is generated from your Slice definitions and, therefore, specific
to the types of objects and data you have defined in Slice. The proxy code has
two major functions:

o It provides a down-call interface for the client. Calling a function in the
generated proxy API ultimately ends up sending an RPC message to the
server that invokes a corresponding function on the target object.

Introduction to Ice Client and Server Structure

Copyright © 2005-2010 ZeroC, Inc. 1.17

o It provides marshaling and unmarshaling code.

Marshaling is the process of serializing a complex data structure, such as
a sequence or a dictionary, for transmission on the wire. The marshaling
code converts data into a form that is standardized for transmission and
independent of the byte order and padding rules of the local machine.

Unmarshaling is the reverse of marshaling, that is, deserializing data that
arrives over the network and reconstructing a local representation of the
data in types that are appropriate for the programming language in use.

 The skeleton code is also generated from your Slice definitions and, therefore,
specific to the types of objects and data you have defined in Slice. The skeleton
code is the server-side equivalent of the client-side proxy code: it provides an up-
call interface that permits the Ice run time to transfer the thread of control to the
application code you write. The skeleton also contains marshaling and
unmarshaling code, so the server can receive parameters sent by the client, and
return parameters and exceptions to the client.

 The object adapter is a part of the Ice API that is specific to the server side: only
servers use object adapters. An object adapter has several functions:

o The object adapter maps incoming requests from clients to specific
methods on programming-language objects. In other words, the object
adapter tracks which servants with what object identity are in memory.

o The object adapter is associated with one or more transport endpoints. If
more than one transport endpoint is associated with an adapter, the
servants incarnating objects within the adapter can be reached via
multiple transports. For example, you can associate both a TCP/IP and a
UDP endpoint with an adapter, to provide alternate quality-of-service
and performance characteristics.

o The object adapter is responsible for the creation of proxies that can be
passed to clients. The object adapter knows about the type, identity, and
transport details of each of its objects and embeds the correct details
when the server-side application code requests the creation of a proxy.

Note: As far as the process view is concerned, there are only two processes involved: the
client and the server. All the run time support for distributed communication is provided
by the Ice libraries and the code that is generated from Slice definitions. (A third process,
IceGrid, provides features such as object location and on-demand server activation.)

Introduction to Ice Ice Services

Copyright © 2005-2010 ZeroC, Inc. 1.18

1-11 Ice Services

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

1-11

Ice Services
Ice provides a number of services:

• Persistence service (Freeze)

• Replication, load balancing, server activation service
(IceGrid)

• Application server (IceBox)

• Publish–subscribe service (IceStorm)

• Software distribution and patching service (IcePatch2)

• Firewall traversal and session management (Glacier2)

Freeze is a library; the other services are implemented as
stand-alone processes.

Notes:

The Ice core provides a sophisticated client–server platform for distributed application
development. However, realistic applications usually require more than just a remoting
capability: typically, you also need a way to start servers on demand, distribute proxies to
clients, distribute asynchronous events, configure your application, distribute patches for
an application, and so on.

Ice ships with a number of services that provide these and other features. The services are
implemented as Ice servers to which your application acts as a client. None of the
services use Ice-internal features that are hidden from application developers so, in
theory, you could develop equivalent services yourself. Having these services available,
as part of the platform, allows you to focus on application development, instead of having
to build a lot of infrastructure first. Moreover, building such services is not a trivial effort,
so it pays to know what is available and use it instead of reinventing your own wheel.

1-11-1 Freeze
Ice has a built-in object persistence service, known as Freeze. Freeze makes it easy to
store object state in a database: you define the state stored by your objects in Slice, and
the Freeze compiler generates code that stores and retrieves object state to and from a
database. Freeze uses Berkeley DB as its database.

Introduction to Ice Ice Services

Copyright © 2005-2010 ZeroC, Inc. 1.19

1-11-2 IceGrid
IceGrid is an implementation of an Ice location service that resolves the symbolic
information in an indirect proxy to a protocol–address pair for indirect binding. A
location service is only the beginning of IceGrid’s capabilities.

In addition, IceGrid:

 Allows you to register servers for automatic start-up: instead of requiring a server
to be running at the time a client issues a request, IceGrid can start servers on
demand, when the first client request arrives.

 Provides tools that make it easy to configure complex applications containing
several servers.

 Supports replication and load-balancing.

 Automates the distribution and patching of server executables and dependent
files.

 Provides a simple query service that allows clients to obtain proxies for objects
they are interested in.

 Allows you to allocate Grid resources for the exclusive use of authenticated
clients.

1-11-3 IceBox
IceBox is a simple application server that can orchestrate the starting and stopping of a
number of application components. Application components can be deployed as a
dynamic library instead of as a process. This reduces overall system load, for example, by
allowing you to run several application components in a single Java virtual machine
instead of having multiple processes, each with its own virtual machine.

1-11-4 IceStorm
IceStorm is a publish–subscribe service that decouples clients and servers.
Fundamentally, IceStorm acts as a distribution switch for events. Publishers send events
to the service, which, in turn, passes the events to subscribers. In this way, a single event
published by a publisher can be sent to multiple subscribers. Events are categorized by
topic, and subscribers specify the topics they are interested in. Only events that match a
subscriber’s topic are sent to that subscriber. The service permits selection of a number of
quality-of-service criteria to allow applications to choose the appropriate trade-off
between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to large
numbers of application components. (A typical example is a stock ticker application with
a large number of subscribers.) IceStorm decouples the publishers of information from
subscribers and takes care of the redistribution of the published events. In addition,
IceStorm can be run as a federated service, that is, multiple instances of the service can
be run on different machines to spread the processing load over a number of CPUs.

Introduction to Ice Ice Services

Copyright © 2005-2010 ZeroC, Inc. 1.20

1-11-5 IcePatch2
IcePatch2 is a software patching service. It allows you to easily distribute software
updates to clients. Clients simply connect to the IcePatch2 server and request updates for
a particular application. The service automatically checks the version of the client’s
software and downloads any updated application components in a compressed format to
conserve bandwidth. Software patches can be secured using the Glacier2 service, so only
authorized clients can download software updates.

1-11-6 Glacier2
Glacier2 is the Ice firewall service: it allows clients and servers to securely communicate
through a firewall without compromising security. Client-server traffic is fully encrypted
using public key certificates and is bidirectional. Glacier2 offers support for mutual
authentication as well as secure session management.

Ice Pro
Studen

Copyr

ogramming wit
nt Workbook

ight © 2005-20

Int

th Java

010 ZeroC, Inc.

terf

.

2
face

2 T
e D

La

The
Def
ang

e Sl
init
gua

lice
tion
age

e
n
e

The Slice Interface Definition Language Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 2.2

2 The Slice Interface Definition Language

2-1 Lesson Overview

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-1

Lesson Overview
• This lesson presents:

– the syntax and semantics of the Slice interface
definition language

• Slice is an acronym for Specification Language for Ice,
but is pronounced as a single syllable, to rhyme with Ice.

• By the end of this lesson, you will be able to write
interface definitions in Slice and to compile these
definitions into Java stubs and skeletons.

Notes:

This lesson presents the syntax and semantics of the Slice interface definition language.
(Slice is an acronym for Specification Language for Ice, but is pronounced as a single
syllable, to rhyme with Ice.)

2-1-1 Lesson Objectives
By the end of this lesson, you will be able to write interface definitions in Slice and to
compile these definitions into Java stubs and skeletons.

The Slice Interface Definition Language What is Slice?

Copyright © 2005-2010 ZeroC, Inc. 2.3

2-2 What is Slice?

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-2

What is Slice?
• Slice separates language-independent types from language-

specific implementation.

• A compiler creates language-specific source code from Slice
definitions.

• Slice is a declarative language that defines types. You cannot
write executable statements in Slice.

• Slice establishes the client-server contract: data can be
exchanged only if it is defined in Slice, via operations that are
defined in Slice.

• Slice definitions are analogous to C++ header files: they ensure
that client and server agree about the interfaces and data types
they use to exchange data.

Notes:

Slice is a type definition language that defines the types, interfaces, and operations that
are used by clients and servers. Slice establishes the client–server contract: it is the
distributed equivalent of C++ header files and serves the same purpose, namely, to ensure
that client and server agree on the types they use. Slice provides the abstraction layer that
separates language-independent interfaces from language-specific implementation.

A compiler compiles Slice definitions into source code for a particular implementation
language, such as C++ or Java. The generated code provides the API that your application
(client and server) use to interact.

If you want to exchange data between client and server, you must define corresponding
types in Slice. You cannot exchange arbitrary language-native data between clients and
servers because that would destroy the language independence of Ice.

Slice is a purely declarative language—there is no way to write executable statements in
Slice (because Slice is an interface definition language, not an implementation definition
language).

The Slice Interface Definition Language Single-Language Development

Copyright © 2005-2010 ZeroC, Inc. 2.4

2-3 Single-Language Development

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-3

Single-Language Development
Slice-to-C++

Compiler
Printer.iceSlice

Developer
Server

Developer

Client
Developer

Server.cpp

Client.cpp

Printer.cppPrinter.h

C++ Ice
Run-time
Library

Server ExecutableClient Executable

RPC

Notes:

The above diagram illustrates the development process if both client and server are
written in C++.

 The compiler generates a header file that is included in the source code of both
client and server. The header file defines an API for client- and server-side
application code and ensures that client and server agree on the types that are
defined in Slice.

 Both client and server are linked against the generated source file, which contains
the code that implements the Slice-specific APIs. (The generated source also
includes run-time support code, such as functions that are called by the Ice run
time to marshal and unmarshal data.)

 Client and server each link against the Ice run-time library, which contains
support code that is independent of the Slice types.

The Slice Interface Definition Language Cross-Language Development

Copyright © 2005-2010 ZeroC, Inc. 2.5

2-4 Cross-Language Development

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-4

Cross-Language Development

Java Ice Run-time
Library

Printer.ice

Slice
Developer

Server
Developer

Client
Developer

Server.cppPrinter.cppPrinter.h

C++ Ice Run-time
Library

Server ExecutableClient Executable

Client.java *.java

Slice-to-C++
Compiler

Slice-to-Java
Compiler

Java C++

RPC

Notes:

If client and server are written in different languages, the Slice definitions are compiled
twice.

Example: We compile definitions once for the client to generate Java, and once for the
server to generate C++. Client and server then link with their respective generated code
and Ice run-time library.

It is important to note that client and server development can proceed independently. The
only link between client and server is the common Slice definition.

The Slice Interface Definition Language Slice Source Files

Copyright © 2005-2010 ZeroC, Inc. 2.6

2-5 Slice Source Files

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-5

Slice Source Files
• Slice source files must end in a .ice extension.

• Slice source files are preprocessed by the C++
preprocessor, so you can use #include, #define, etc.

• If you #include another file, the compiler parses
everything, but generates code only for the including
file—the included file must be compiled separately.

• Slice is a free-form language, so indentation and white
space are not lexically significant (other than as token
separators).

• Definitions can appear in any order, but things must be
defined before they are used (or forward declared).

Notes:

Slice source files must end in a .ice extension. For example, Clock.ice is a valid file
name. The compilers reject extensions other than .ice. For case-insensitive file systems,
such as DOS, the file extension can be in uppercase or lowercase letters, so Clock.ICE
is legal. For case-sensitive file systems, such as UNIX, Clock.ICE is illegal. (The
extension must be in lowercase letters.)

Slice files are preprocessed in the same way as C++ source files. This means that you can
use #include and other preprocessor features (such as macro definitions). The most
common use of the preprocessor is to include another Slice definition, and to provide a
double-include guard:
// File MyDefs.ice

#ifndef _MYDEFS_ICE
#define _MYDEFS_ICE

// Definitions here...

#endif

We strongly recommend that you routinely use such a guard for your definitions.

The Slice Interface Definition Language Comments and Keywords

Copyright © 2005-2010 ZeroC, Inc. 2.7

2-6 Comments and Keywords

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-6

Comments and Keywords
• Slice supports both C- and C++-style comments:

/*
* This is a comment.
*/

// This comment extends to the end of this line.

• Slice keywords are written in lowercase (e.g. class), except for the
keywords Object and LocalObject, which must be capitalized as
shown.

Notes:

Slice allows you to use both C-style and C++-style comments.

Slice keywords must be spelled in lowercase, except for Object and LocalObject,
which must be spelled as shown. The complete list of Slice keywords is:
bool enum implements module struct
byte exception int Object throws
class extends interface out true
const false local sequence void
dictionary float LocalObject short
double idempotent long string

The Slice Interface Definition Language Identifiers

Copyright © 2005-2010 ZeroC, Inc. 2.8

2-7 Identifiers

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-7

Identifiers
• Identifiers consist of alphabetic characters, digits, and

optionally underscores.
• Identifiers must start with an alphabetic character.
• Identifiers are case insensitive: Foo and foo cannot both be

defined in the same naming scope.
• Identifiers must be capitalized consistently: once you have

defined Foo, you must refer to it as Foo (not foo or FOO).
• Slice identifiers cannot begin with Ice.
• You can define identifiers that are the same as a keyword, by

escaping them:
\dictionary // Identifier, not keyword

This mechanism exists as an escape hatch in case new
keywords are added to the language over time.

• Avoid creating identifiers that are likely to be programming-
language keywords, such as function or new.

Notes:

Slice identifiers begin with an alphabetic character (A-Z and a-z), followed by any
number of alphabetic characters and digits. You may also use underscores in your
identifiers, but underscores may not appear consecutively, nor can they appear at the
beginning or end of the identifier. A compiler option (--underscore) must be
specified to enable the use of underscores.

To allow Slice to be mapped to languages that use case-sensitive identifiers (such as C++)
as well as languages that use case-insensitive identifiers (such as Visual Basic), Slice
identifiers are case-insensitive. This means that Foo and foo are considered the same
identifier within a naming scope. Moreover, you must capitalize identifiers consistently
throughout so, once you have defined Foo, you must continue to refer to it as Foo (not
foo or FOO).

Slice reserves all identifiers beginning with Ice (in any capitalization). The reason for
this is that language mappings require a namespace that is guaranteed to be separate from
the namespace for Slice identifiers. That way, a language mapping can introduce
additional identifiers into the generated code without fear of clashing with a user-defined
Slice identifier.

The Slice Interface Definition Language Identifiers

Copyright © 2005-2010 ZeroC, Inc. 2.9

Slice allows you create identifiers that are the same as a Slice keyword by escaping them:
for example, \dictionary is a legal Slice identifier. However, this mechanism exists
primarily to make it possible to add new keywords to Slice over time without hopelessly
breaking existing applications—you should avoid using this mechanism otherwise.

If you create a Slice identifier that is a programming-language keyword, such as new, the
language mapping will take care of mapping that identifier to something that is
acceptable.

Example: Slice new becomes _cpp_new for C++, and @new for C#. However, escaped
identifiers such as these make code harder to read, so you should avoid using Slice
identifiers that are likely to be programming-language keywords. Identifiers such as
package, switch, union, try, and function are best avoided.

The Slice Interface Definition Language Modules

Copyright © 2005-2010 ZeroC, Inc. 2.10

2-8 Modules

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-8

Modules
A Slice file contains one or more module definitions.
module Example {

// Definitions here...
};

The only definition that can appear at global scope (other than
comments and preprocessor directives) is a module definition.

All other definitions must be nested inside modules.
Modules can be reopened and can be nested.
module Example {

// Some definitions here.
};

module Example {
// More definitions here...
module Nested { /* … */};

};

Notes:

All Slice definitions (other than comments and preprocessor directives) must appear
inside a module. Slice does not permit other definitions at global scope because they can
be difficult to map to various languages that limit the kinds of things that can be defined
at global scope (such as C# and Visual Basic).

Modules can be reopened. This is most useful if you have a large project: if you split your
Slice definitions over a number of source files, all the definitions in these files can still be
part of a single module. However, if you modify the definitions in one of the source files,
only those parts of the application that actually include the corresponding header file need
to be recompiled. In other words, reopened modules can reduce compilation time and
make it easier for multiple developers to work on a single project.

Module definitions can be nested to any depth.

Modules map to the appropriate scoping construct in the various target languages. (For
example, Slice modules map to Java packages and to C++ namespaces.) By using the
appropriate C++ using or Java import declaration, you can avoid getting excessively
long identifiers at the programming language level.

The Slice Interface Definition Language The Ice Modules

Copyright © 2005-2010 ZeroC, Inc. 2.11

2-9 The Ice Modules

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-9

The Ice Modules
Ice uses a number of top-level modules: Ice, Freeze,
Glacier2, IceBox, IcePatch2, IceStorm, and IceGrid.

• The Ice module contains definitions for basic run
time features.

• The remaining modules contain definitions for
specific services.

Almost all of the Ice run time APIs are defined in Slice.
This automatically defines the API for all implementation
languages.
Only a few key functions (the initialization for the run time)
and a few language-specific helper functions are defined
natively.

Notes:

The interface to the Ice run time is defined in the Ice module. By defining run time APIs
in Slice, a single definition suffices for all implementation languages. The mapping rules
for each language then determine the exact shape of the API.

The various language mappings also define a small number of other APIs that are not
defined in Slice. One such API exists to initialize the Ice run time in each language.
Language mappings also may define helper functions in order to make the mapping easier
to use. However, the bulk of the APIs are defined in Slice.

The Slice Interface Definition Language Basic Slice Types

Copyright © 2005-2010 ZeroC, Inc. 2.12

2-10 Basic Slice Types

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-10

Basic Slice Types

Slice provides a number of built-in basic types:

Type Range of Mapped Type Size of Mapped Type

bool false or true = 1 bits

byte -128-127 or 0-255 = 8 bits

short -215 to 215-1 = 16 bits

int -231 to 231-1 = 32 bits

long -263 to 263-1 = 64 bits

float IEEE single-precision = 32 bits

double IEEE double-precision = 64 bits

string All Unicode glyphs, excluding
the character with all bits zero.

Variable-length

Notes:

The built-in Slice types all are subject to change in representation as they are transmitted
between clients and servers. For example, integers may undergo byte-swapping as they
are exchanged between a little-endian and big-endian machine, and floating-point values
may be converted to IEEE format for transmission if the native floating-point format is
not IEEE. Similarly, strings may undergo representational changes. For example, they
may change in size, depending on the native representation of Unicode characters.

The one type that is guaranteed not to undergo representational changes is byte: the bit
pattern in a byte is preserved faithfully regardless of the platform. This makes byte
suitable for transmission of binary data. (Other types such as string and int are
subject to changes in representation, for example, due to changes in codeset or byte
ordering.)

Slice provides the integer types short, int, and long, with 16-bit, 32-bit, and 64-bit
ranges, respectively. Note that, on some architectures, any of these types may be mapped
to a native type that is wider. Also note that no unsigned types are provided. (This choice
was made because unsigned types are difficult to map into languages without native
unsigned types, such as Java.)

The Slice Interface Definition Language Basic Slice Types

Copyright © 2005-2010 ZeroC, Inc. 2.13

Strings use the Unicode character set. The only character that cannot appear inside a string
is the zero character. (This is a concession to standard library functions, such as strcmp,
which become impossible to use if strings can contain embedded zero characters.) Slice
does not have the concept of a null string, because this would be difficult to map to
languages such as C++ (where strings are mapped to std::string). If you need to
model an “optional” string, use the empty string to indicate the “not there” condition or, if
that is impossible because the empty string is a valid string, refer to the technique shown
in Section 2-13.

The Slice Interface Definition Language Enumerations

Copyright © 2005-2010 ZeroC, Inc. 2.14

2-11 Enumerations

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-11

Enumerations

Enumerations are much like their Java counterpart:
enum Fruit { Apple, Pear, Orange };

You cannot specify the value of the enumerators:
enum Fruit { Apple=0, Pear=7, Orange=2 }; // Illegal!

As for C++ (and unlike Java), enumerators enter the
namespace enclosing the enumeration:
enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP }; // Error!

Empty enumerations are illegal.

Notes:

Enumerations work like their Java counterparts, but do not permit you to define the value
of the enumerators, as a concession to languages without support for this feature.

The Slice Interface Definition Language Structures

Copyright © 2005-2010 ZeroC, Inc. 2.15

2-12 Structures

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-12

Structures

Structures contain at least one member of arbitrary type:
struct TimeOfDay {

short hour; // 0-23

short minute; // 0-59

short second; // 0-59

};

The name of the structure, TimeOfDay, becomes a type
name in its own right. (There are no typedefs in Slice.)

Structures form a namespace, the member names must be
unique only within their enclosing structure.

Members may optionally declare a default value.

Notes:

Structures must have at least one member of arbitrary type. Structures do not support
inheritance, and have no reference concept—they are intended to be used as simple
groups of fields. If you need inheritance or references, use classes. (Refer to Section 2-
28.)

Structure definitions cannot be nested:
struct TwoPoints {
 struct Point { // Illegal!
 short x;
 short y;
 };

 Point coord1;
 Point coord2;
};

The Slice Interface Definition Language Structures

Copyright © 2005-2010 ZeroC, Inc. 2.16

This is true for Slice in general: type definitions cannot be nested. You can achieve the
equivalent effect (and more cleanly) by writing:
struct Point {
 short x;
 short y;
};

struct TwoPoints { // Legal (and cleaner!)
 Point coord1;
 Point coord2;
};

By default, the language-specific code generated for a Slice structure does not initialize
the members, meaning they are initialized using whatever semantics the native language
provides. In Java, all members are initialized to a zero or null value.

You can ensure that members are initialized to different default values by defining them
in Slice:
struct Point {
 short x = 1;
 short y = 1;
};

The legal syntax for default values is the same as for constants. (Refer to Section 2-15.)

The Slice Interface Definition Language Sequences

Copyright © 2005-2010 ZeroC, Inc. 2.17

2-13 Sequences

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-13

Sequences
Sequences are (possibly empty) variable-length collections:
sequence<Fruit> FruitPlatter;

The element type can be anything, including another sequence
type:
sequence<FruitPlatter> FruitBanquet;

The order of elements is never changed during transmission;
sequences are ordered collections.
Use sequences to model collections, such as sets, lists, arrays,
bags, queues, and trees.
Use sequences to model optional values:
sequence<string> InitialOpt;

struct Person {
string firstName;
InitialOpt initial;
string lastname;

};

Notes:

Sequences are variable-length collections of elements. It is valid for a sequence to be
empty, that is, to contain no elements. The element type can be a built-in or user-defined
type, including another sequence. Sequences can be used to model sets, lists, arrays, bags,
stacks, queues, trees. (Trees are often modeled with nested sequences.)

Sequences are the preferred way to model optional values, and their use for this purpose is
idiomatic.

You can use classes (refer to Section 2-28) to model optional values, but sequences are
more efficient to marshal and therefore the preferred option.

The Slice Interface Definition Language Dictionaries

Copyright © 2005-2010 ZeroC, Inc. 2.18

2-14 Dictionaries

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-14

Dictionaries
A dictionary is a map of key-value pairs:
struct Employee {

long number;

string firstName;

string lastName;

};

dictionary<long, Employee> EmployeeMap;

Use dictionaries to model maps and sparse arrays.

Dictionaries map to efficient lookup data structures, such as STL
maps or hash tables.

The key type of a dictionary must be one of:
• An integral type (bool, byte, short, int, long, enum) or string

• A structure containing only members of integral type or type string

Notes:

Dictionaries are maps of name–value pairs. They map to efficient data structures in the
respective target languages, such as STL maps or hash tables.

The key type of dictionaries is restricted to avoid complexities in language mappings, and
to avoid the vagaries of floating-point representation.

The Slice Interface Definition Language Constants and Literals

Copyright © 2005-2010 ZeroC, Inc. 2.19

2-15 Constants and Literals

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-15

Constants and Literals
Slice permits constants of type:
• bool, byte, short, int, long
• enumerated type
• float and double
• string

Examples:
const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

Slice does not support constant expressions.

Notes:

Constants are initialized by literals. The syntax for literals is similar to C++, with some
minor restrictions:
1. Numeric and enumerated literals must have a value within the range of the constant

type. There is no type casting of any kind, and the compiler will emit a diagnostic if a
value is out of range.

2. bool constants must be initialized with true or false. (You cannot use 1 and 0.)

3. You can initialize integer constants using decimal, octal, or hexadecimal notation, so
42, 052, 0X2A, and 0x2a all mean the same value: 42 decimal.

For short, int, and long, the value is always interpreted as a positive number. For
example, to get the value –32768 into a short, you must use a unary minus:
-0x8000, not 0xffff.

For byte values, the value is always interpreted as a bit pattern, and the value must be
in the range 0–255 (but can be specified as an octal or hexadecimal literal).

The suffixes u, U, l, and L (used by C++ to indicate unsigned and long values) are
illegal.

The Slice Interface Definition Language Constants and Literals

Copyright © 2005-2010 ZeroC, Inc. 2.20

4. Floating-point constants use the same syntax as C++, except that the l and L suffixes
to indicate an extended floating-point value are illegal. The f and F suffixes for
single-precision floating-point values are legal, but are ignored. (The type of a
constant is determined by its formal declared type, not by the type of the literal.)

Here are a few examples:
const float P1 = -3.14f; // Integer & fraction, with suffix
const float P2 = +3.1e-3; // Integer, fraction, and exponent
const float P3 = .1; // Fraction part only
const float P4 = 1.; // Integer part only
const float P5 = .9E5; // Fraction part and exponent
const float P6 = 5e2; // Integer part and exponent

5. Strings support the same escape sequences as C++. Here are a few examples:
const string AnOrdinaryString = "Hello World!";

const string DoubleQuote = "\"";
const string TwoSingleQuotes = "'\'"; // ' and \' are OK
const string Newline = "\n";
const string CarriageReturn = "\r";
const string HorizontalTab = "\t";
const string VerticalTab = "\v";
const string FormFeed = "\f";
const string Alert = "\a";
const string Backspace = "\b";
const string QuestionMark = "\?";
const string Backslash = "\\";

const string OctalEscape = "\007"; // Same as \a
const string HexEscape = "\x07"; // Ditto

const string UniversalCharName = "\u03A9"; // Greek Omega

Adjacent string literals are concatenated, as for C++:

const string MSG1 = "Hello World!";
const string MSG2 = "Hello" " " "World!"; // Same message

/*
 * Escape sequences are processed before concatenation,
 * so the string below contains two characters,
 * '\xa' and 'c'.
 */
const string S = "\xa" "c";

As referenced in Section 2-10, Slice has no concept of a null string, so the following
is illegal:
const string nullString = 0; // Illegal!

The Slice Interface Definition Language Interfaces

Copyright © 2005-2010 ZeroC, Inc. 2.21

2-16 Interfaces

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-16

Interfaces
Interfaces define object types:
struct TimeOfDay { /* ... */ };

interface Clock {

TimeOfDay getTime();

void setTime(TimeOfDay time);

};

• Interfaces define the public interface of an object. There is no notion of
a private part of an object in Slice.

• Interfaces only have operations, not data members. (Data members
are implementation state, not interface.)

• Invoking an operation on an interface sends a (possibly remote)
invocation (RPC) to the target object.

• Interfaces define the smallest and only granularity of distribution: if
something does not have an interface (or Slice class, which is also an
interface), it cannot be invoked remotely.

Notes:

The central focus in Slice is on defining interfaces. The above interface defines two
operations. Clients invoke these operations via a proxy to an object of type Clock. The
proxy encapsulates the identity of the target object (that is, denotes a specific instance of
Clock). Invoking an operation on the instance sends an RPC from the client to the
instance. The target object can be on a different machine than the client, in a process on
the same machine as the client, or even inside the client’s own address space—the Ice run
time ensures that such differences are hidden.

Interfaces only contain operations, but not data members. The only thing that is invocable
remotely is an operation, so it does not make sense to have data members in interfaces,
because data members are about implementation, not interface. For the same reason,
everything in an interface is public. You keep things private by simply not mentioning
them.

A Slice interface defines the smallest grain of distribution in Ice: each Ice object has a
unique identity (encapsulated in its proxy) that distinguishes it from all other Ice objects;
for communication to take place, you must invoke operations on an object’s proxy. There
is no other notion of an addressable entity in Ice.

The Slice Interface Definition Language Interfaces

Copyright © 2005-2010 ZeroC, Inc. 2.22

The partition of an application into interfaces therefore has profound influence on the
overall architecture. Distribution boundaries must follow interface (or class) boundaries;
you can spread the implementation of interfaces over multiple address spaces (and you
can implement multiple interfaces in the same address space), but you cannot implement
parts of interfaces in different address spaces.

The Slice Interface Definition Language Operations and Parameters

Copyright © 2005-2010 ZeroC, Inc. 2.23

2-17 Operations and Parameters

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-17

Operations and Parameters
An interface contains zero or more operation definitions.
Each operation definition has:

– an operation name

– a return type (or void if none)

– zero or more parameters

– an optional idempotent modifier

– an optional exception specification

If an operation has out-parameters, they must follow in-parameters.

Operations cannot be overloaded.
interface Example {

void op();

int otherOp(string p1, out string p2);

};

Notes:

An interface contains zero or more operation definitions. (Interfaces can be empty.) The
operations of an interface must have different names, that is, operation overloading is not
supported (due to the difficulty of mapping overloading into some languages).

An operation can return a result of any type; if no result is returned by an operation, it
must have void return type.

An operation can have zero or more parameters. Parameters come in two flavors:

 in-parameters

In-parameters are values that travel from client to server, that is, the client
initializes them, and the server receives them.

 out-parameters

out-parameters are values that travel from server to client, that is, the server
initializes them and the client receives them.

An in-parameter cannot follow an out-parameter in an operation definition:

interface BadExample {
 int otherOp(out string p1, string p2); // Error!
};

The Slice Interface Definition Language idempotent Operations

Copyright © 2005-2010 ZeroC, Inc. 2.24

2-18 idempotent Operations

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-18

idempotent Operations
An idempotent operation is an operation that, if invoked
twice, has the same effect as if it is invoked once:

idempotent void setName(string name);
idempotent string getName();

The idempotent keyword affects the error-recovery behavior
of the Ice run time: for normal operations, the run time has
to be more conservative to preserve at-most-once
semantics.

Notes:

You can use an idempotent modifier on operation definitions. An operation is
idempotent if it meets one of the following criteria:

 it is (conceptually) a read-only operation, that is, it does not visibly modify state
in the server, or

 if two successive invocations of the operation (with the same parameters) have
the same effect as a single invocation.

In other words, idempotent operations have read-only or assignment semantics. For
example, x = 1; is an idempotent statement, whereas x++; is not.

The Ice run time uses more aggressive error recovery for operations that are idempotent
because, for such operations, there is no need to maintain at-most-once semantics: at-
most-once semantics guarantee that an operation is either invoked or not invoked; in no
case can a single invocation in a client result in more than one invocation in the server.

The Slice Interface Definition Language idempotent Operations

Copyright © 2005-2010 ZeroC, Inc. 2.25

For normal operations (which potentially make state changes in the server), at-most-once
semantics are preserved, which requires the Ice run time to be conservative under certain
error conditions: the run time cannot retry a failed request if there is a possibility the
request was received by the server and only the reply to the request was lost. On the other
hand, for idempotent operations, the Ice run time can retry a request even if it is not
known whether the previous attempt was received by the server because retrying such
operations is harmless.

The Slice Interface Definition Language User Exceptions

Copyright © 2005-2010 ZeroC, Inc. 2.26

2-19 User Exceptions

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-19

User Exceptions
Operations can throw exceptions:
exception Error {}; // Empty exceptions are legal

exception RangeError {

TimeOfDay errorTime;

TimeOfDay minTime;

TimeOfDay maxTime;

};

interface Clock {

idempotent TimeOfDay getTime();

idempotent void setTime(TimeOfDay time)

throws RangeError, Error;

};

Operations must declare the exceptions they can throw in the exception
specification.

Exceptions are not data types: they cannot be used as data members or
parameters.

Notes:

Operations can throw user-defined exceptions. If an operation throws user exceptions, it
must declare those exceptions in its exception specification. Exceptions can contain any
user-defined type, and can be empty.

Exceptions themselves are not types: you cannot pass them as parameters, and you cannot
use them as the member of a structure or class, as a sequence element, or the key or value
type of a dictionary.

You cannot throw built-in types (such as int or string) as exceptions.1

Exception members can define default values, as with structures (Refer to Section 2-12).

1 This is a concession to language mappings; C++ is unusual in that it allows any type to be thrown as an
exception—other languages, such as Java and C#, are much more restrictive.

The Slice Interface Definition Language Exception Inheritance

Copyright © 2005-2010 ZeroC, Inc. 2.27

2-20 Exception Inheritance

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-20

Exception Inheritance
Exceptions can form single-inheritance hierarchies:
exception ErrorBase {

string reason;

};

enum RTError {

DivideByZero, NegativeRoot, IllegalNull /* ... */

};

exception RuntimeError extends ErrorBase {

RTError err;

};

An operation that specifies a base exception in its exception specification
can throw the base exception and any exceptions derived from the base:
void op() throws ErrorBase; // Can throw RuntimeError

Derived exceptions cannot redefine data members defined in a base.

Notes:

You can set up single-inheritance hierarchies for exceptions. This allows you to classify
exceptions and handle them at different levels of abstraction in the code. (The standard
libraries of many programming languages use this technique.)

If an operation’s exception specification mentions a base exception, this implies that, at
run time, the operation can throw the base exception and any exceptions derived from the
base exception (in keeping with the is-a meaning of inheritance).

A derived exception cannot have a data member with the same name as a data member in
one of its base exceptions:
exception Base {
 int i;
};

exception Intermediate extends Base {
 int j;
};

exception Derived extends Intermediate {
 int i; // Error!
};

The Slice Interface Definition Language Exception Inheritance

Copyright © 2005-2010 ZeroC, Inc. 2.28

If an operation throws a derived exception, but the client only has knowledge of the base
type (for example, because the derived exception was added after the client was
deployed), the client receives the base part of the exception, that is, the Ice run time slices
the exception to the most-derived part that is understood by the receiver. (This is
analogous to catching C++ exceptions by value: the exception is sliced to the formal type
used in the catch clause.)

The Slice Interface Definition Language Ice Run-Time Exceptions

Copyright © 2005-2010 ZeroC, Inc. 2.29

2-21 Ice Run-Time Exceptions

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-21

Ice Run-Time Exceptions
Any operation (whether it has an exception specification or not)
can always throw Ice run-time exceptions.

Run-time exceptions capture common error conditions, such as
out of memory, connect timeout, etc.

Three exceptions have special meaning:
• UnknownException

The operation in the server has thrown a non-Ice exception (such as
java.lang.ClassCastException).

• UnknownUserException

The operation has thrown an exception that is not in its exception
specification.

• UnknownLocalException

The operation on the server-side has thrown a run-time exception that
is not marshaled back to the client. (See next slide.)

Notes:

An operation can throw an Ice run-time exception at any time. Ice run-time exceptions
capture common error conditions, such as out of memory, connection loss, timeouts, and
so on.

You cannot specify an Ice run-time exception in an operation’s exception specification.
(In effect, every operation has an implicit exception specification for all Ice run-time
exceptions.)

If an operation implementation throws a native exception (such as
ClassCastException), or throws an Ice run-time exception that is not known to the
client, the client-side Ice run time delivers UnknownException to the client. (A client
can receive an unknown Ice run-time exception from a server if the server uses a later
version of the Ice run time than the client.)

The Slice Interface Definition Language Ice Run-Time Exceptions

Copyright © 2005-2010 ZeroC, Inc. 2.30

The Ice run-time exceptions are arranged into a hierarchy as follows:

Exception

UserExceptionLocalException

Specific Run-Time Exceptions...
Specific Run-Time Exceptions...

Specific Run-Time Exceptions...
Specific Run-Time Exceptions...

Specific User Exceptions...
Specific User Exceptions...

Specific User Exceptions...
Specific User Exceptions...

All user exceptions implicitly inherit from Ice::UserException, and all Ice run-
time exceptions implicitly inherit from Ice::LocalException.

You can use this at the language-mapping level to catch all user exception, all Ice run-
time exceptions, or all Ice exceptions with a single exception handler.

The Slice Interface Definition Language Ice Run-Time Exceptions

Copyright © 2005-2010 ZeroC, Inc. 2.31

The complete hierarchy of Ice run-time exceptions is as follows:

Exception

UserExceptionLocalException

InitializationException
IllegalIdentityException
IdentityParseException
PluginInitializationException
DNSException
ProxyParseException
NoEndpointException
ObjectAdapterDeactivatedException
ObjectAdapterNameInUseException
ObjectAdapterIdInUseException
VersionMismatchException
CommunicatorDestroyedException
EndpointParseException
EndpointSelectionTypeParseException
LocationForwardIdentityException
PluginInitializationException
CollocationOptimizationException
AlreadyRegisteredException
NotRegisteredException
TwowayOnlyException
CloneNotImplementedException
SecurityException
FixedProxyException
FeatureNotSupportedException

UnknownException

BadMagicException
UnsupportedProtocolException
UnsupportedEncodingException
UnknownMessageException
ConnectionNotValidatedException
UnknownRequestIdException
UnknownReplyStatusException
CloseConnectionException
ForcedCloseConnectionException
AbortBatchRequestException
IllegalMessageSizeException
CompressionNotSupportedException
CompressionException
DatagramLimitException

ProxyUnmarshalException
UnmarshalOutOfBoundsException
IllegalIndirectionException
MemoryLimitException
EncapsulationException
NoObjectFactoryException
EncapsulationException
NegativeSizeException
StringConversionException

MarshalException

ProtocolException

UnknownLocalException
UnknownUserException ConnectionRefusedException

ConnectionFailedException
ConnectionLostException

ConnectTimeoutException
ConnectionTimeoutException
CloseTimeoutException

TimeoutException

SocketException FileException

SyscallException

RequestFailedException

ObjectNotExistException
OperationNotExistException
FaceNotExistException

The shaded exceptions are the only exceptions that are ever received remotely. If an
operation raises any of the unshaded exceptions, you know that the exception was raised
by the local run time.

The Slice Interface Definition Language Run-Time Exceptions Raised by the Server

Copyright © 2005-2010 ZeroC, Inc. 2.32

2-22 Run-Time Exceptions Raised by the Server

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-22

Run-Time Exceptions Raised by the Server
There are three exceptions that can be received from the remote end:

• ObjectNotExistException

The client has called an operation via a proxy that denotes a servant
that does not exist. Most likely cause: the object existed in the past but
has since been destroyed.

• OperationNotExistException

The client has invoked an operation that the target object does not
support. Most likely cause: client and server were compiled with
mismatched Slice definitions.

• FacetNotExistException

The client has called an operation via a proxy that denotes an existing
object, but the specified facet does not exist. Most likely cause: the
client specified an incorrect facet name, or the facet existed in the past
but has since been destroyed.

Notes:

Apart from UnknownException, UnknownLocalException, and
UnknownUserException, there are only three other exceptions that can be received
from the remote end:

 ObjectNotExistException

This exception is raised if a client invokes an operation via a proxy that denotes a
servant that does not exist: the operation was successfully sent to the server, and the
server-side run time consulted with the server-side application code; it is the
application code that ultimately decides whether an object exists or not. If you receive
an ObjectNotExistException, it usually means that the Ice object does not
exist. Depending on how you have written the server, it may also mean that the object
may never exist in the future; however, the server can create semantics such that the
object can come into existence later. Whether this can happen depends on whether the
server allows “resurrecting” an object, that is, whether it re-uses the object ID of a
previous object for a new one. (Refer to Section 12-9.)

The Slice Interface Definition Language Run-Time Exceptions Raised by the Server

Copyright © 2005-2010 ZeroC, Inc. 2.33

 OperationNotExistException

This exception is raised if the client invokes a non-existent operation on an object.
This can happen only if client and server have been compiled with mismatched Slice
definitions (which should never happen), or if the client uses dynamic invocation.
(See the Ice manual for more details on dynamic invocation.)

 FacetNotExistException

This exception is raised if the client invokes an operation on an existing object, but on
a facet of that object that does not exist. (See the Ice manual for more details on
facets.)

The Slice Interface Definition Language Proxies

Copyright © 2005-2010 ZeroC, Inc. 2.34

2-23 Proxies

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-23

Proxies
Proxies are the distributed equivalent of class pointers or references:

interface Clock { /* ... */ };

dictionary<string, Clock*> TimeMap; // Time zones

exception BadZoneName { /* ... */ };

interface WorldTime {

idempotent Clock* findZone(string zoneName) throws BadZoneName;

idempotent TimeMap listZones();

};

The * operator is known as the proxy operator.

Notes:

Proxies are the distributed equivalent of pointers: proxies denote objects that can be in a
remote address space or in the local address space. Proxies act as the local ambassador for
a remote object: invocations on the proxy are sent to the remote object. Passing a proxy as
a parameter passes the proxy, not the object!

Note: You must use the * proxy operator to define a proxy type. (Leaving the * operator
out has a different meaning, which we examine in Section 2-29.)

Proxies, apart from their ability to point to a remote address space, have the same
semantics as C++ pointers:

 Proxies can dangle, that is, point at a non-existent object. Contrary to C++
dangling pointers, invoking via a dangling proxy is safe: instead of crashing, you
get an exception. (Typically, ObjectNotExistException,
ConnectFailedException, or ConnectionRefusedException,
depending on whether the server is running (but the object does not exist), the
machine on which the server is supposed to be is down or unreachable, or the
machine on which the server is running is reachable, but the server is down,
respectively.)

The Slice Interface Definition Language Proxies

Copyright © 2005-2010 ZeroC, Inc. 2.35

 Proxies can point nowhere. A dedicated null value is provided by all language
mappings to indicate that a proxy points at no object. (This value can be
marshaled just like any other proxy.)

 Calling an operation on a proxy always uses late binding: if the proxy’s actual
object is more derived than the proxy’s formal type, the implementation in the
derived object is invoked, not in the base object.

The Slice Interface Definition Language Interface Inheritance

Copyright © 2005-2010 ZeroC, Inc. 2.36

2-24 Interface Inheritance

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-24

Interface Inheritance
Interfaces support inheritance:
interface AlarmClock extends Clock {

TimeOfDay getAlarmTime();

void setAlarmTime(TimeOfDay alarmTime)

throws BadTimeVal;

};

Multiple inheritance is legal as well:
interface Radio {

void setFrequency(long hertz) throws GenericError;

void setVolume(long dB) throws GenericError;

};

enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {

void setMode(AlarmMode mode);

AlarmMode getMode();

};

Notes:

Interfaces support single and multiple inheritance. The semantics are as for C++ and Java:
you can pass a proxy to a derived object where a proxy to a base object is expected. With
multiple inheritance, a derived interface can inherit the same base interface via more than
one path:
interface B { /* ... */ };
interface I1 extends B { /* ... */ };
interface I2 extends B { /* ... */ };
interface D extends I1, I2 { /* ... */ };

The Slice Interface Definition Language Interface Inheritance

Copyright © 2005-2010 ZeroC, Inc. 2.37

This results in the familiar diamond shape:

B
<<interface>>

I2
<<interface>>

I1
<<interface>>

D
<<interface>>

The Slice Interface Definition Language Interface Inheritance Limitations

Copyright © 2005-2010 ZeroC, Inc. 2.38

2-25 Interface Inheritance Limitations

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-25

Interface Inheritance Limitations
An interface cannot inherit an operation with the same name
from more than one base interface:
interface Clock {

void set(TimeOfDay time); // set time

};

interface Radio {

void set(long hertz); // set frequency

};

interface RadioClock extends Radio, Clock { // Illegal!

// ...

};

There is no concept of overriding or overloading.

Notes:

An operation name cannot be inherited from more than one base interface. (Allowing this
would complicate some language mappings considerably.)

Once an interface has inherited an operation, you must not re-define the operation in a
derived interface, even if the signature is identical:
interface Base {
 void op();
};

interface Derived extends Base {
 void op(); // Illegal!
};

It is understood that the derived interface has an operation op; you are not allowed to
restate that.

The Slice Interface Definition Language Implicit Inheritance from Object

Copyright © 2005-2010 ZeroC, Inc. 2.39

2-26 Implicit Inheritance from Object

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-26

Implicit Inheritance from Object
All interfaces implicitly inherit from Object, which is the root of the
inheritance hierarchy.

interface ProxyStore {

void putProxy(string name, Object* o);

Object* getProxy(string name);

};

Because any proxy is assignment compatible with Object, ProxyStore
can store and return proxies for any interface type.

Explicit inheritance from Object is illegal:

interface Wrong extends Object { // Error!

// ...

};

Notes:

All interfaces implicitly inherit from Object, which is the root of the inheritance tree.
For example, the inheritance for the RadioClock we defined in Section 2-24 really
looks as follows:

Object
<<interface>>

Clock
<<interface>>

Radio
<<interface>>

AlarmClock
<<interface>>

RadioClock
<<interface>>

Implicit inheritance

Implicit inheritance

Note: You cannot explicitly inherit from Object.

The Slice Interface Definition Language Self-Referential Interfaces & Forward Declarations

Copyright © 2005-2010 ZeroC, Inc. 2.40

2-27 Self-Referential Interfaces & Forward Declarations

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-27

Self-Referential Interfaces & Forward Declarations

Interfaces can be self-referential:

interface Node {

int val();

Node* next();

};

You can forward-declare an interface to create interfaces that
mutually refer to each other:

interface Wife; // Forward declaration

interface Husband {

Wife* getWife();

};

interface Wife {

Husband* getHusband();

};

Notes:

The name of an interface is defined once the opening curly brace is parsed, so an interface
can refer to itself, as in the case of Node above.

You can use a forward declaration to create interfaces that mutually refer to each other.

You cannot derive from an interface until after it has been defined:

interface Base; // Forward declaration

interface Derived1 extends Base {}; // Error!

interface Base {}; // Definition

interface Derived2 extends Base {}; // OK, definition was seen

The Slice Interface Definition Language Classes

Copyright © 2005-2010 ZeroC, Inc. 2.41

2-28 Classes

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-28

Classes
Classes can contain data members as well as operations.

Classes support single implementation and multiple interface inheritance.
They implicitly derive from Object (just like interfaces).

One way to use classes is as structures that are extensible by inheritance:
class TimeOfDay {

short hour; // 0 - 23

short minute; // 0 - 59

short second; // 0 - 59

};

class DateTime extends TimeOfDay {

short day; // 1 - 31

short month; // 1 - 12

short year; // 1753 onwards

};

Empty classes are legal.

Data members may define default values, as with structures.

Notes:

Classes, at their most basic, are structures that support single implementation inheritance.
Multiple implementation inheritance is illegal:
class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 - 59
};

class Date {
 short day;
 short month;
 short year;
};

class DateTime extends TimeOfDay, Date { // Error!
 // ...
};

Class members can define default values, as with structures. (Refer to Section 2-12.)

The Slice Interface Definition Language Passing Classes as Parameters and Slicing

Copyright © 2005-2010 ZeroC, Inc. 2.42

2-29 Passing Classes as Parameters and Slicing

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-29

Classes as Parameters and Slicing
Classes are passed by value, just like structures.

You can pass a derived class where a base is expected:
interface Clock {

void setTime(TimeOfDay t);

};

You can pass a TimeOfDay instance or a DateTime instance to setTime.

The receiver gets the most-derived type that it has static type knowledge
of:

• If the server was linked with the stubs for both TimeOfDay and
DateTime, the server receives a DateTime instance (as the static type
TimeOfDay).

• If the server was linked with the stubs for only TimeOfDay, the
DateTime object is sliced to TimeOfDay in the server.

Use classes if you need polymorphic values (instead of interfaces).

Notes:

Classes are passed by value, just like structures. Classes are also polymorphic: you can
pass a derived instance where a base instance is expected. Provided that the receiver of a
derived instance that is passed as a base knows the derived type, it receives the derived
instance; otherwise, the derived instance is sliced to the most-derived type that is known
to the receiver.

The semantics of class slicing are similar to passing a C++ class by value. However, in
C++, passing a C++ class by value always results in the instance being sliced to the
formal parameter type. On the other hand, in Ice, slicing occurs only if the receiver does
not have static type knowledge of the actual run-time type of an instance. In other words,
Ice preserves the run-time type of a class whenever possible and applies slicing only if it
has no other choice.

The Slice Interface Definition Language Passing Classes as Parameters and Slicing

Copyright © 2005-2010 ZeroC, Inc. 2.43

Classes are useful if you need polymorphic values instead of interfaces:

class Shape { /* ... */ };

class Circle extends Shape { /* ... */ };

class Rectangle extends Shape { /* ... */ };

sequence<Shape> ShapeSeq;

interface ShapeProcessor {
 void processShapes(ShapeSeq ss);
};

Note: processShapes can accept any of the types derived from Shape. Language
mappings provide a dynamic cast that allows the receiver to safely down-cast a Shape
into its actual derived type.

The Slice Interface Definition Language Classes as Unions

Copyright © 2005-2010 ZeroC, Inc. 2.44

2-30 Classes as Unions

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-30

Classes as Unions
You can use derivation from a common base class to model unions.

It is often useful to include a discriminator in the base class, so the
receiver can use a switch statement to find which member is active
(instead of an if-then-else chain of dynamic casts).

class UnionDiscriminator {

int d;

};

class Member1 extends UnionDiscriminator {

// d == 1

string s;

};

class Member2 extends UnionDiscriminator {

// d == 2

double d;

};

Notes:

You can use classes to model unions. As a rule, you should include the union
discriminator in the base class. This not only makes it more explicit what is going on, but
also allows the receiver of a union to more efficiently determine the active member
because it can use a switch statement on the union discriminator instead of having to
use an if-then-else chain of dynamic casts.

Note: You also can use classes to model optional parameters, for example:
 class Empty {};

 class StringOpt extends Empty {
 string s;
 };

However, we recommend that you use the approach shown in Section 2-13 instead—it is
both idiomatic and more efficient at run time.

The Slice Interface Definition Language Self-Referential Classes

Copyright © 2005-2010 ZeroC, Inc. 2.45

2-31 Self-Referential Classes

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-31

Self-Referential Classes
Like interfaces, classes can be self-referential:
class Link {

SomeType value;

Link next; // Note: NOT Link* !

};

This looks like Link includes itself but really means that next contains
a pointer to another Link instance that is in the same address space.

Passing an instance of Link as a parameter passes the entire chain of
instances to the receiver.

You can use self-referential classes to model arbitrary graphs.

Passing a node of the graph as a parameter marshals the entire graph
that is reachable using that node as a starting point.

Cyclic graphs are permitted, as are graphs with nodes of in-degree > 1.

Forward declarations are legal (with the same syntax as for interfaces).

Notes:

Classes can be self-referential. A class that “includes itself” really is a class that contains a
pointer (or reference) to another instance of the same type. The pointer always points at
another instance in the same address space. (Language mappings provide a null value, so
you can make a pointer point at no instance.)

If you pass an instance of a class as a parameter, all instances that are reachable via
pointers in the passed instance are marshaled. (The run time ensures that cyclic graphs do
not cause problems.) For example, passing a four-element chain of Link instances
marshals the entire chain:

The Slice Interface Definition Language Self-Referential Classes

Copyright © 2005-2010 ZeroC, Inc. 2.46

Client Server Client Server

Parameter

Before RPC After RPC

RPC

Identity relationships are correctly preserved across RPC calls. For example, if nodes have
an in-degree greater than one, the graph is re-created on the receiving side exactly as it
was sent; this holds true even if different in-parameters point at the same node or different
nodes in a graph.

You can forward-declare a class using the same syntax as to forward-declare an interface.

The Slice Interface Definition Language Classes with Operations

Copyright © 2005-2010 ZeroC, Inc. 2.47

2-32 Classes with Operations

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-32

Classes with Operations
class TimeOfDay {

short hour; // 0 - 23

short minute; // 0 - 59

short second; // 0 – 59

string format();

};

Classes with operations are mapped to abstract base classes with
abstract methods.

The application provides the implementation for the operations.

Invoking an operation on a class invokes the operation in the local
address space of the class.

It follows that, if a class with operations is sent as a parameter, the code
for the operation must exist at the receiving end. The Ice run time only
marshals the data, not the code.

Classes with operations allow you to implement client-side processing.

Notes:

Classes can have operations. The syntax is the same as for operations on interfaces.

At the language-mapping level, classes with operations become abstract base classes, and
the application code defines a derived class that contains implementations for the
operations.

Invoking an operation on a class runs the operation on the local class instance, that is,
invocations on classes are always local.

Classes are useful to implement client-side processing. If a client invokes on a proxy, the
invocation goes remote, back to the server in which the object is implemented, and so
incurs RPC overhead. In contrast, if a client invokes on a class by value (instead of by
proxy) the invocation stays local and executes inside the client’s local copy of the class,
so there is no overhead. However, if a class has operations, both the sender and the
receiver must have an implementation of the class’ operations—the Ice run time does not
send code from sender to receiver, only the data members.

The Slice Interface Definition Language Classes Implementing Interfaces

Copyright © 2005-2010 ZeroC, Inc. 2.48

2-33 Classes Implementing Interfaces

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-33

Classes Implementing Interfaces
interface Time {

idempotent TimeOfDay getTime();

idempotent void setTime(TimeOfDay time);

};

interface Radio {

idempotent void setFrequency(long hertz);

idempotent void setVolume(long dB);

};

class RadioClock implements Time, Radio {

TimeOfDay time;

long hertz;

};

Classes can implement one or more interfaces (in addition to extending a
single other class).

The derived class inherits all of the operations of its base interface(s).

Notes:

A class can implement one or more interfaces. (The class can add data members and
operations of its own.)

A class that implements an interface can act as the servant of an interface (that is, the class
can provide the behavior in a server of remotely callable operations on an interface).

If a class uses both implementation and interface inheritance, the implementation
inheritance must be listed first:
interface Time { /* ... */ };

class Clock implements Time { /* ... */ };

interface AlarmClock extends Time { /* ... */ };

interface Radio { /* ... */ };

class RadioAlarmClock
 extends Clock
 implements AlarmClock, Radio {
 // ...
};

The Slice Interface Definition Language Class Inheritance Limitations

Copyright © 2005-2010 ZeroC, Inc. 2.49

2-34 Class Inheritance Limitations

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-34

Class Inheritance Limitations
Operations and data members must be unique within a hierarchy:
interface BaseInterface {

void op();

};

class BaseClass {

int member;

};

class DerivedClass

extends BaseClass

implements BaseInterface {

void someOperation(); // OK

int op(); // Error!

int someMember; // OK

long member; // Error!

};

As for interfaces, you cannot inherit the same operation from different
base interfaces.

Notes:

Classes cannot inherit the same operation name from more than one base class or
interface. In addition, classes cannot redefine a data member inherited from a base class.
(Both restrictions exist to simplify language mappings.)

The Slice Interface Definition Language Pass-by-Value Versus Pass-by-Reference

Copyright © 2005-2010 ZeroC, Inc. 2.50

2-35 Pass-by-Value Versus Pass-by-Reference

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-35

Pass-by-Value Versus Pass-by-Reference

You can create proxies to classes:
class TimeOfDay { /* ... */ };

interface Clock {

TimeOfDay getTime(); // Returns class

TimeOfDay* getTimeProxy(); // Returns proxy

};

Invoking an operation on a class invokes the operation locally.

Invoking an operation on a proxy invokes the operation remotely.

Only operations (but not data members) of a class are accessible via
its proxy.

You can also pass an interface by value:
interface Time { /* ... */ };

interface Clock {

void set(Time t); // Note: NOT Time* !

};

Notes:

Classes have an interface. For a class that does not derive from anything, the interface of
the class is its operations. For a derived class, its interface is all the operations of the class
and its base class and/or base interfaces.

The proxy for a class is like the proxy for an interface: invocations on the proxy are sent
to the class via an RPC, that is, invocations via proxy are non-local, whereas invocations
on the class itself are local.

You can pass an interface by value as well as by proxy. If you do this, you are effectively
stating that any class derived from that interface can be passed.

The Slice Interface Definition Language Architectural Implications of Classes

Copyright © 2005-2010 ZeroC, Inc. 2.51

2-36 Architectural Implications of Classes

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-36

Architectural Implications of Classes

• Classes enable client-side processing and avoid RPC
overhead.

• The price is that the behavior of (that is, the code for) class
operations must be available wherever the class is used.

• If you have a C++ class with operations, and want to use it
from a Java client, you must re-implement the operations of
the class in Java, with identical semantics.

• Classes with operations destroy language- and OS-
transparency (if they are passed by value).

• Use classes with operations only if you can control the
deployment environment for the entire application!

Notes:

The operations of a class effectively use client-side native code: the behavior of a class
must be implemented wherever the class is used. If clients are written in different
languages and run on different operating systems, you must provide semantically identical
implementations of the operations for all combinations of language, compiler, and OS that
are used by clients.

Doing this obviously can be quite a lot of work and, because clients need to run native
code, classes with operations effectively destroy the language- and operating system
transparency of an application. This does not mean that classes with operations are
automatically bad. For example, if you have operations on classes, but do not pass them
by value (only using them to implement servants), there are no problems. But do exercise
caution if you do pass classes with operations by value: unless you can control the client-
side deployment for the application, you may be better off forgoing operations on classes.

Note: Classes without operations do not suffer any of these problems: because no client-
side code is required, no language- or operating system transparency is lost; classes
without operations are equivalent to structures that support inheritance and pointer
semantics.

The Slice Interface Definition Language Classes Versus Structures

Copyright © 2005-2010 ZeroC, Inc. 2.52

2-37 Classes Versus Structures

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-37

Classes Versus Structures
Classes can model structures, so why have structures?

Structures are more efficient because they can be stack-
allocated whereas classes are always heap-allocated.

Classes are slower to marshal than structures, and consume
more bandwidth on the wire.

Use classes if you need one or more features not provided by
structures:

• inheritance

• pointer semantics

• client-side local operations

• choice of local versus remote invocation

Notes:

If you are doubtful about whether to use a class or a structure in a particular situation, use
the simple rule of thumb that a structure is preferable. Use a class only when you cannot
model what you need with a structure.

The Slice Interface Definition Language The :: Scope Qualification Operator

Copyright © 2005-2010 ZeroC, Inc. 2.53

2-38 The :: Scope Qualification Operator

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-38

The :: Scope Qualification Operator
The :: scope resolution operator allows you to refer to types that
are not in the current scope or immediately enclosing scope:
module Types {

sequence<long> LongSeq;

};

module MyApp {

sequence<Types::LongSeq> NumberTree;

};

You can anchor a lookup explicitly at the global scope with a
leading :: operator: ::Types::LongSeq

Notes:

The :: operator allows you to refer to types that are defined in a different module, that is,
are not in the enclosing scope. The operator also makes it possible to have mutually-
dependent interfaces in different modules.
module Children {
 interface Child; // Forward declaration
};

module Parents {
 interface Mother {
 Children::Child* getChild(); // OK
 };
 interface Father {
 Children::Child* getChild(); // OK
 };
};

module Children { // Reopen module

The Slice Interface Definition Language The :: Scope Qualification Operator

Copyright © 2005-2010 ZeroC, Inc. 2.54

 interface Child { // Define Child
 Parents::Mother* getMother();
 Parents::Father* getFather();
 };
};

Re-opening the Children module is necessary because, syntactically, you cannot
forward-declare an interface that is in a different module (a forward declaration requires a
simple identifier, not a qualified name). The example is somewhat contrived though,
because mutually-dependent interfaces are closely related and, therefore, should probably
not be in different modules.

The Slice Interface Definition Language Type Identifiers

Copyright © 2005-2010 ZeroC, Inc. 2.55

2-39 Type Identifiers

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-39

Type Identifiers
Each Slice type has a unique internal identifier, call the type ID:

• For built-in types, the type ID is the name of the type, e.g. int or
string.

• For user-defined types, the type name is the fully-scoped name:
module Times {

struct Time { /* ... */ };

interface Clock { /* ... */ };

};

The type IDs for this definition are ::Times, ::Times::Time, and
::Times::Clock.

• For proxies, the type ID has a trailing *, so the type ID of the proxy for
the Clock interface is ::Times::Clock*.

Notes:

Internally, Ice identifies each Slice type by its type ID. Type IDs for built-in types are the
name of the type itself. Type IDs for user-defined types are the fully-qualified scoped
name of the type, with a trailing * if the type is a proxy.

The Slice Interface Definition Language Operations on Object

Copyright © 2005-2010 ZeroC, Inc. 2.56

2-40 Operations on Object

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-40

Operations on Object
All interfaces and classes implicitly inherit from Object:
sequence<string> StringSeq;

interface Object { // "Pseudo" Slice!

void ice_ping();

bool ice_isA(string typeID);

string ice_id();

StringSeq ice_ids();

// ...

};

• ice_ping provides a basic reachability test.

• ice_isA tests whether an interface is compatible with the supplied
type.

• ice_id returns the type ID of the interface.

• ice_ids returns all types IDs of the interface (the type ID of the
interface itself, plus the type IDs of all base interfaces).

Notes:

All interfaces implicitly inherit from Object, which provides a number of built-in
operations. (Note that you cannot define Object in Slice because Object is a keyword.
But, if you could define it, part of its definition would look as shown above.)

Note that all operations of Object contain an ice_ prefix. This makes name clashes
with user-defined operations impossible (because user-defined operations cannot contain
this prefix).

 ice_ping provides a basic reachability test. If it completes successfully, the
server hosting the target object is reachable, and the target object was found in the
server, that is, the proxy denotes a valid object at the time of the call.

An ObjectNotExistException indicates that the server is reachable, but
that the proxy is dangling.

If the server is down, ice_ping raises ConnectionRefusedException;
other reachability problems are reported with an appropriate exception, such as
ConnectTimeoutException.

 ice_isA tests whether a proxy is compatible with the supplied type ID. It is the
distributed equivalent of a Java instanceof.

The Slice Interface Definition Language Operations on Object

Copyright © 2005-2010 ZeroC, Inc. 2.57

 ice_id returns the type ID of an interface. Note that the returned ID denotes the
most-derived type of the object, not the static interface type of the proxy.

 ice_ids returns a sequence of type IDs of an interface, that is, the actual most-
derived type of the object, plus all its ancestor type IDs.

The Slice Interface Definition Language Local Types

Copyright © 2005-2010 ZeroC, Inc. 2.58

2-41 Local Types

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-41

Local Types
The APIs for the Ice run time are (almost) completely defined in Slice.
Most of the Slice definitions use the local keyword, for example:
module Ice {

local interface Communicator { /* ... */ };

};

local types cannot be accessed remotely; they define library objects.

local types do not inherit from Object. Instead, they derive from a
common base LocalObject.

Therefore, you cannot pass a local object where a non-local object is
expected and vice-versa.

You can define your own local interfaces, but there will rarely be a
need to do so.

Notes:

Most of the APIs for the Ice run time (apart from a few language-specific helper
functions) are defined in Slice. This obviates the need to define a separate language-
specific API for each language mapping. Most of the interfaces to the run time are
specified as local interfaces. local interfaces are implemented in libraries, that is,
they are simply objects that live in the application’s local address space and that the
application links against.

local interfaces have a separate inheritance hierarchy with LocalObject as the root,
so you cannot accidentally pass a local object where a non-local object is expected and
vice-versa. Moreover, the Slice compilers do not generate marshaling code for local types,
so it is physically impossible to pass them to another address space.

You can define and implement your own local interfaces, but there will rarely be a need to
so. (One exception to this rule is servant locators, which must be implemented as local
objects. Refer to Section 18-6.)

The Slice Interface Definition Language Metadata

Copyright © 2005-2010 ZeroC, Inc. 2.59

2-42 Metadata

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-42

Metadata
Any Slice construct can be preceded by a metadata directive, for
example:
["java:type:java.util.LinkedList<Integer>"] sequence<int> IntSeq;

Metadata directives can also appear at global scope:
[["java:package:com.acme"]]

Global metadata directives must precede any Slice definitions in
a source file.

Metadata directives affect the code generator only.

Metadata directives never affect the client–server contract: no
matter how you add, remove, or change metadata directives, the
information that is exchanged on the wire is always the same.

Notes:

A local metadata directive (delimited by single square brackets) can appear as a prefix to
any Slice definition. A global metadata directive (delimited by double square brackets)
must appear at global scope and precede any other Slice definitions in a source file.

You can have several metadata directives in a single pair of brackets, for example:
["amd", "java:getset"] interface Foo { /* ... */ };

Metadata directives provide supplementary information to the code generator, for
example, to change the default language mapping of a type, or to cause the compiler to
emit asynchronous dispatch APIs.

Metadata directives never change the information that is passed across the wire, that is,
changing a metadata directive cannot invalidate the client–server contract.

We will examine the various metadata directives in the relevant chapters to which they
apply.

The Slice Interface Definition Language The slice2java Compiler

Copyright © 2005-2010 ZeroC, Inc. 2.60

2-43 The slice2java Compiler

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

2-43

The slice2java Compiler
The slice2java command compiles one or more Slice definition files.
slice2java [options] file...

For example:
slice2java MyDefs.ice

This generates a number of source files, one for each class, using the
usual directory hierarchy for modules (which map to Java packages).

Commonly used options:
• -DNAME, -DNAME=DEF, -UNAME

Define or undefine preprocessor symbol NAME.
• -IDIR

Add DIR to the search path for #include directives.
• --impl

Create sample implementation files.

Notes:

You use the slice2java command to compile Slice definitions. You can compile
multiple Slice files in a single invocation of the compiler. For each input file, the compiler
creates several output files, one for each generated Java class.

Note: slice2java has many more options than are shown here. Consult the Ice manual
for details.

One option you may want to explore is --impl: it creates a classnameI.java file
for each class that you need to implement. These files contain an outline of the code that
you need to write to implement the Slice interfaces you have compiled. Using this option
can save you a lot of tedious typing.

Ice Pro
Studen

Copyr

ogramming wit
nt Workbook

ight © 2005-20

th Java

010 ZeroC, Inc.

3 A
C

.

As
Cre

sig
eati
De

gnm
ing
efin

men
 Sl

nitio

nt 1
ice

ons

e
s

Assignment 1: Creating Slice Definitions Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 3.2

3 Assignment 1: Creating Slice Definitions

3-1 Exercise Overview

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc.

3-1

Exercise Overview
In this exercise, you will:

• gain hands-on experience of how to create Slice
definitions by designing interfaces for a simple
application.

By the completion of this exercise, you will have gained
experience in creating Slice definitions, the syntax and
semantics of the language, and how to use the slice2java
compiler.

Notes:

In this exercise, you will gain hands-on experience of how to create Slice definitions by
designing interfaces for a simple application.

3-1-1 Exercise Objectives
By the completion of this exercise, you will have gained experience in creating Slice
definitions, the syntax and semantics of the language, and how to use the slice2java
compiler.

Assignment 1: Creating Slice Definitions A Simple Remote File System

Copyright © 2005-2010 ZeroC, Inc. 3.3

3-2 A Simple Remote File System

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc.

3-2

Simple Remote File System
Functionality
• The file system consists of directories and files. The usual hierarchical

structure applies, so the file system has a single root directory that,
recursively, can contain other directories and files.

• Each directory and file has a name; names within the same parent
directory must be unique, as for a Windows or UNIX file system.

• Directories provide a way to list their contents.

• The content of files can be read and written. (Only text files are
supported, not binary files.)

• For the time being, the file system does not permit life cycle
operations, that is, clients can read and write the contents of files and
list the contents of directories, but cannot create or delete files or
directories.

Notes:

3-2-1 Functionality
The file system consists of directories and files. The usual hierarchical structure applies,
so the file system has a single root directory that, recursively, can contain other
directories and files.

Each directory and file has a name; names within the same parent directory must be
unique, as for a Windows or UNIX file system.

Directories provide a way to list their contents.

The content of files can be read and written. (Only text files are supported, not binary
files.)

For the time being, the file system does not permit life cycle operations, that is, clients
can read and write the contents of files and list the contents of directories, but cannot
create or delete files or directories.

Assignment 1: Creating Slice Definitions What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 3.4

3-3 What You Need to Do

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc.

3-3

What You Need to Do
Create Slice definitions for this application.
• In your lab1 directory, locate the file named Filesystem.ice.
• Place your definitions into this file. The directory also contains a

project file build.xml that you can use to compile your definitions.
Consider the following:
• What interfaces need to be present in your definitions, and how they

should relate to each other.
• What error conditions can arise and how to best inform clients of any

errors.
• What interaction patterns are clients likely to exhibit. Would it be

advisable to modify your definitions to accommodate such patterns
and, if so, why?

Once you have compiled your definitions, have a look at the generated
code. What parts of your specification do you recognize in the
generated code?

Notes:

3-3-1 Create Slice definitions for this application.
In your lab1 directory, you will find a file named Filesystem.ice.

Place your definitions into this file. The directory also contains a project file
build.xml that you can use to compile your definitions. (The project file uses a
custom build step that invokes the slice2java command.)

Consider the following:

 What interfaces need to be present in your definitions, and how they should relate
to each other.

 What error conditions can arise and how to best inform clients of any errors.

 What interaction patterns are clients likely to exhibit? Would it be advisable to
modify your definitions to accommodate such patterns and, if so, why?

When you have compiled your definitions:

 Have a look at the generated code.

 What parts of your specification do you recognize in the generated code?

Assignment 1: Creating Slice Definitions Slice Definitions for a Simple Remote File System

Copyright © 2005-2010 ZeroC, Inc. 3.5

3-4 Slice Definitions for a Simple Remote File System

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc.

3-4

One Possible Solution
module Filesystem {

exception IOError {

string reason;

};

interface Node {

idempotent string name();

};

sequence<string> Lines;

interface File extends Node {

idempotent Lines read() throws IOError;

idempotent void write(Lines text) throws IOError;

};

sequence<Node*> NodeSeq;

interface Directory extends Node {

idempotent NodeSeq list();

};

};

Notes:

3-4-1 One Possible Solution
The example below shows one possible solution to this exercise. Keep in mind that this is
not the only possible or correct solution—it merely provides one particular way to solve
the problem.

module Filesystem {
 exception IOError {
 string reason;
 };

 interface Node {
 idempotent string name();
 };

 sequence<string> Lines;

Assignment 1: Creating Slice Definitions Slice Definitions for a Simple Remote File System

Copyright © 2005-2010 ZeroC, Inc. 3.6

 interface File extends Node {
 idempotent Lines read() throws IOError;
 idempotent void write(Lines text) throws IOError;
 };

 sequence<Node*> NodeSeq;

 interface Directory extends Node {
 idempotent NodeSeq list();
 };
};

Assignment 1: Creating Slice Definitions Slice Definitions for a Simple Remote File System

Copyright © 2005-2010 ZeroC, Inc. 3.7

3-4-2 Another Way to Structure Slice Definitions
Note that clients are likely to call the list operation on a directory for display purposes.
This means that, if a directory contains 20 files, it is likely that the client will
immediately follow up by calling the name operation on each file so it can display its
name. A more efficient way to structure the Slice definitions is therefore as follows:

module Filesystem {
 exception IOError {
 string reason;
 };

 interface Node {
 idempotent string name();
 };

 sequence<string> Lines;

 interface File extends Node {
 idempotent Lines read() throws IOError;
 idempotent void write(Lines text) throws IOError;
 };

 enum NodeType { FileT, DirT };

 struct NodeDetails {
 string name;
 NodeType type;
 Node* proxy;
 };

 sequence<NodeDetails> NodeDetailsSeq;

 interface Directory extends Node {
 idempotent NodeDetailsSeq list();
 };
};

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

th Java

5-2010 ZerooC, Inc.

4
Sl

Clie
ice

M

ent
e-to
Ma

t-S
o-Ja
app

ide
ava
ing

e
a
g

Client-Side Slice-to-Java Mapping Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 4.2

4 Client-Side Slice-to-Java Mapping

4-1 Lesson Overview

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-1

Lesson Overview
• This lesson presents:

– the mapping from Slice to Java for the client side.

– the relevant APIs that are necessary to initialize and
finalize the Ice run time

– instructions for compiling a Java Ice client.

• By the end of this lesson, you will know how each Slice
type maps to Java and be able to write a working Ice
client.

Notes:

This lesson presents the mapping from Slice to Java for the client side. It includes the
relevant APIs that are necessary to initialize and finalize the Ice run time, and explains
how to compile a Java Ice client.

We present the server-side mapping in Chapter 6.

4-1-1 Lesson Objectives
By the end of this lesson, you will know how each Slice type maps to Java and be able to
write a working Ice client.

Client-Side Slice-to-Java Mapping Client-Side Java Mapping

Copyright © 2005-2010 ZeroC, Inc. 4.3

4-2 Client-Side Java Mapping

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-2

Client-Side Java Mapping
The client-side Java mapping defines rules for:
• initializing and finalizing the Ice run time

• mapping each Slice type into Java

• invoking operations and passing parameters

• handling exceptions

The mapping is fully thread-safe: you need not protect any Ice-
internal data structures against concurrent access.

The mapping rules are simple and regular: know them! The
generated files are no fun to read at all!

slice2java-generated code is platform independent.

Notes:

The bulk of the Ice Java mapping defines rules for how each Slice construct is
represented in Java. It also defines rules for invoking operations, passing parameters, and
handling exceptions. In addition, the Java mapping provides a small number of helper
functions that you need to initialize and finalize the Ice run time.

The mapping is fully thread-safe: for example, concurrent access by different threads to a
proxy (that is, having two threads invoke on the same proxy concurrently) is safe. The
only critical regions you need to worry about are those around your own data.

The mapping rules are simple and regular, and you should know them: it is far easier to
look at the Slice definitions to deduce what the corresponding Java API looks like, than it
is to read the generated source files. The source files are full of sometimes cryptic code
and are cluttered with mapping-internal definitions that are not part of the public API.
This is not to say that you cannot use the generated source files to confirm some detail,
but they are definitely unsuitable to get an idea of what the generated API looks like.

Note that the code that is generated by slice2java is platform independent: for
example, you can compile Slice definitions under Windows and then compile the
generated code under Linux without problems.

Client-Side Slice-to-Java Mapping Initializing the Ice Run Time

Copyright © 2005-2010 ZeroC, Inc. 4.4

4-3 Initializing the Ice Run Time

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-3

Initializing the Ice Run Time
public static void main(String[] args)
{

int status = 1;
Ice.Communicator ic = null;
try {

ic = Ice.Util.initialize(args);
// client code here...
status = 0;

} catch (Exception e) {
}
finally {

if (ic != null) {
try {

ic.destroy();
} catch (Exception e) {
}

}
}
System.exit(status);

}

Notes:

Before you can do anything with the Ice run time, you must initialize it. The above code
shows the general pattern for how to do this. (There is quite a bit unexplained here. For
now, please accept the above code at face value. We explore the initialization and
purpose of the Ice communicator in more detail in Chapter 18.)

The main handle to the Ice run time is of type Ice.Communicator. You must first
obtain an instance of this type before you can do anything else. You obtain the instance
by calling Ice.Util.initialize (a static function) as shown above.

If the initialization fails, Ice.Util.initialize throws an exception and, as a
result, the value of ic is unchanged. (ic still has the initial null value.)

If initialization succeeds, ic has a non-null value.

If the code has successfully initialized the Ice run time, it must destroy the communicator
before returning from main. Failure to do so causes undefined behavior. Destroying the
communicator reclaims resources used by the Ice run time. In particular, destroy
terminates and joins with all threads used by the run time.

All Ice programs follow this basic pattern:

1. Initialize the communicator.

2. If initialization succeeded, destroy the communicator before leaving main.

Client-Side Slice-to-Java Mapping Mapping for Identifiers

Copyright © 2005-2010 ZeroC, Inc. 4.5

4-4 Mapping for Identifiers

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-4

Mapping for Identifiers
Slice identifiers map to corresponding Java identifiers:
struct Employee {

int number;

string name;

};

The generated Java contains:
public class Employee

implements java.lang.Cloneable, java.lang.Serializable
{

public int number;

public String name;

// ...

}

Slice identifers that clash with Java keywords are escaped
with a _ prefix, so Slice while maps to Java _while.

Notes:

Slice identifiers map to the same Java identifiers, except when a Slice identifier happens
to be a Java keyword. To avoid the clash, slice2java prefixes such identifiers with _.

Some Slice types create more than one Java type. For example, a Slice proxy Foo creates
Java Foo and FooPrx types (plus some others). In such cases, if the Slice identifier is a
Java keyword, the _ prefix is applied only where necessary. For example, the proxy name
while creates the Java symbols _while and whilePrx (not _whilePrx).

Client-Side Slice-to-Java Mapping Mapping for Modules

Copyright © 2005-2010 ZeroC, Inc. 4.6

4-5 Mapping for Modules

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-5

Mapping for Modules
Slice modules map to Java packages. The nesting of definitions
is preserved:
module M1 {

module M2 {

// ...

};

// ...

};

This maps to Java as:
package M1;

// Definitions for M1 here...

package M1.M2;

// Definitions for M1.M2 here...

Notes:

Slice modules map to Java packages, using the same structure of nesting as the Slice
definitions.

If a Slice module is re-opened, the corresponding Java package is re-opened as well:
module M1 {
 // ...
};
module M3 {
 // ...
};
module M1 { // Re-open M1
 // ...
};

This maps to Java as:
package M1;
// Definitions for M1 here...

Client-Side Slice-to-Java Mapping Mapping for Modules

Copyright © 2005-2010 ZeroC, Inc. 4.7

package M1.M2;
// Definitions for M1.M2 here...

package M1;
// More definitions for M1 here...

Client-Side Slice-to-Java Mapping Mapping for Built-In Types

Copyright © 2005-2010 ZeroC, Inc. 4.8

4-6 Mapping for Built-In Types

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-6

Mapping for Built-In Types
The built-in Slice types map to Java types as follows:

Slice Type Java Type

bool boolean

byte byte

short short

int int

long long

float float

double double

string String

Notes:

Not surprisingly, the Slice built-in types map to their Java counterparts. Slice string
maps to java.lang.String.

Client-Side Slice-to-Java Mapping Mapping for Enumerations

Copyright © 2005-2010 ZeroC, Inc. 4.9

4-7 Mapping for Enumerations

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-7

Mapping for Enumerations
Slice enumerations map unchanged to the corresponding
Java enumeration.
enum Fruit { Apple, Pear, Orange };

This maps to the Java definition:
public enum Fruit implements java.io.Serializable {

Apple,

Pear,

Orange;
// ...

}

Notes:

Not surprisingly, Slice enumerations map to the corresponding Java enumeration without
change.

Client-Side Slice-to-Java Mapping Mapping for Structures

Copyright © 2005-2010 ZeroC, Inc. 4.10

4-8 Mapping for Structures

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-8

Mapping for Structures
Slice structures map to Java classes with all data members public:
struct Employee {

string lastName;

string firstName;

};

This maps to:
public class Employee

implements java.lang.Cloneable, java.io.Serializable {

public String lastName;
public String firstName;

public Employee();

public Employee(String lastName, String firstName);

public boolean equals(java.lang.Object rhs);

public int hashCode();

public java.lang.Object clone();

};

Notes:

Structures map to classes with a public member for each Slice member, in the same order.

The generated class provides a default constructor that explicitly initializes those data
members that declare default values, as well as a “one-shot” constructor that takes an
initial value for each data member. The class also defines equals, hashCode, and
clone member functions, which have the usual behavior.

Client-Side Slice-to-Java Mapping Mapping for Sequences

Copyright © 2005-2010 ZeroC, Inc. 4.11

4-9 Mapping for Sequences

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-9

Mapping for Sequences
By default, Slice sequences map to Java arrays.
sequence<Fruit> FruitPlatter;

No code is generated for the sequence. Use it as you would any
other array, for example:
Fruit[] platter = { Fruit.Apple, Fruit.Pear };

assert(platter.length == 2);

Notes:

By default, Slice sequences map to Java arrays, so all the operations applicable to Java
arrays apply to Slice sequences.

Client-Side Slice-to-Java Mapping Custom Mapping for Sequences

Copyright © 2005-2010 ZeroC, Inc. 4.12

4-10 Custom Mapping for Sequences

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-10

Custom Mapping for Sequences
You can change the mapping for a sequence to a custom type:
["java:type:java.util.LinkedList<Fruit>"]

sequence<Fruit> FruitPlatter;

The nominated type must implement the java.util.List<T> interface.
You can override members, parameter, or return values, for example:
sequence<Fruit> Breakfast;

["java:type:java.util.LinkedList<Fruit>"]

sequence<Fruit> Dessert;

struct Meal1 {

Breakfast b;

Dessert d;

};

struct Meal2 {

["java:type:java.util.LinkedList<Fruit>"] Breakfast b;

["java:type:java.util.Vector<Fruit>"] Dessert d;

};

Notes:

The java:type metadata directive overrides the default sequence mapping to use a
custom type instead. You can specify any type that implements the
java.util.List<T> interface, including types you have created yourself.

The mapping is overridable for individual members, parameters, and return values. For
example, with the above definitions, Meal1.b is an array, whereas Meal2.b is a linked
list.

Client-Side Slice-to-Java Mapping Mapping for Dictionaries

Copyright © 2005-2010 ZeroC, Inc. 4.13

4-11 Mapping for Dictionaries

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-11

Mapping for Dictionaries
Slice dictionaries map to Java maps:
dictionary<long, Employee> EmployeeMap;

No code is generated for this dictionary. Rather, slice2java
substitutes java.util.Map<Long, Employee> for EmployeeMap.

It follows that you can use the dictionary like any other Java map,
for example:
java.util.Map<Long, Employee> em =

new java.util.HashMap<Long, Employee>();

Employee e = new Employee();

e.number = 31;

e.firstName = "James";

e.lastName = "Gosling";

em.put(e.number, e);

Notes:

Slice dictionaries map to types that support the java.util.Map<K,V> interface
(java.util.HashMap<K,V>, by default), so there are no surprises here—all the
usual operations for Java maps apply.

Client-Side Slice-to-Java Mapping Custom Mapping for Dictionaries

Copyright © 2005-2010 ZeroC, Inc. 4.14

4-12 Custom Mapping for Dictionaries

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-12

Custom Mapping for Dictionaries
You can change the default mapping for dictionaries via
metadata:
["java:type:java.util.LinkedHashMap"]

dictionary<string, string> StringTable;

The type specified for the dictionary must support the
java.util.Map interface.

As for sequences, you can override the type for individual
members, parameters, and return values.

Notes:

As for sequences, you can use the java:type metadata directive to override the default
mapping. The nominated type must implement the java.util.Map<K,V> interface.

Client-Side Slice-to-Java Mapping Mapping for Constants

Copyright © 2005-2010 ZeroC, Inc. 4.15

4-13 Mapping for Constants

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-13

Mapping for Constants
Slice constants map to a Java interface with a value member that
stores the value.
const string Advice = "Don't Panic!";

enum Fruit { Apple, Pear, Orange };

const Fruit FavoriteFruit = Pear;

This maps to:
public interface Advice {

String value = "Don't Panic!";

}

public interface FavouriteFruit {

Fruit value = Fruit.Pear;

}

Notes:

Slice constants map to Java interfaces with a value member that stores the value.

Client-Side Slice-to-Java Mapping Mapping for User Exceptions

Copyright © 2005-2010 ZeroC, Inc. 4.16

4-14 Mapping for User Exceptions

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-14

Mapping for User Exceptions
User exceptions map to Java classes derived from UserException.
exception GenericError {

string reason;

};

This maps to:
public class GenericError extends Ice.UserException {

public String reason;

public GenericError();

public GenericError(String reason);

public String ice_name() {

return "GenericError";

}

}

Slice exception inheritance is preserved in Java, so if Slice exceptions
are derived from GenericError, the corresponding Java exceptions
are derived from GenericError.

Notes:

Slice exceptions map to Java classes with a public data member for each exception
member.

The generated class provides a default constructor that explicitly initializes those data
members that declare default values, as well as a “one-shot” constructor that takes an
initial value for each data member. The class also contains an ice_name method that
returns the name of the exception.

Note that all user exceptions derive from Ice.UserException, so you can install a
catch handler that catches all user exceptions. In turn, Ice.UserException derives
from java.lang.Exception.

package Ice;

public abstract class UserException extends Exception {
 public java.lang.Object clone();
 public abstract String ice_name();
 public String toString();
}

Client-Side Slice-to-Java Mapping Mapping for User Exceptions

Copyright © 2005-2010 ZeroC, Inc. 4.17

The exception inheritance of Slice is preserved for the corresponding Java exceptions, so
if you define derived exceptions, the generated Java code uses the same derivation as the
Slice definition.

Client-Side Slice-to-Java Mapping Mapping for Run-Time Exceptions

Copyright © 2005-2010 ZeroC, Inc. 4.18

4-15 Mapping for Run-Time Exceptions

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-15

Mapping for Run-Time Exceptions
Ice run-time exceptions are derived from Ice.LocalException.
In turn, Ice.LocalException derives from
java.lang.RuntimeException.

As for user exceptions, Ice.LocalException provides an
ice_name method that returns the name of the exception.

Notes:

Run-time exceptions are derived from Ice.LocalException, which in turn derives
from java.lang.RuntimeException.

Client-Side Slice-to-Java Mapping Mapping for Interfaces

Copyright © 2005-2010 ZeroC, Inc. 4.19

4-16 Mapping for Interfaces

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-16

Mapping for Interfaces
A Slice interface maps to a number of classes.
interface Simple {

void op();

};

This generates the following interfaces and classes:
interface Simple

final class SimpleHolder

interface SimplePrx

final class SimplePrxHolder

final class SimplePrxHelper

interface _SimpleOperations

interface _SimpleOperationsNC

Notes:

For the above Simple interface, the compiler generates a number of interfaces and
classes for use by the client:

 Simple

For each Slice interface, the compiler generates a corresponding Java interface
with the same name. All interfaces ultimately derive from the Ice.Object
interface (and therefore provide the methods defined for Ice.Object).

 SimpleHolder

This class defines a holder type for the interface, which is used to implement out-
parameters.

 SimplePrx

The proxy interface provides access to the operations of a remote object.

 SimplePrxHolder

This class defines a holder type for the proxy, which is used to implement out-
parameters.

Client-Side Slice-to-Java Mapping Mapping for Interfaces

Copyright © 2005-2010 ZeroC, Inc. 4.20

 SimplePrxHelper

The proxy helper class provides methods that allow you to safely down-cast a
proxy to a more derived type.

 _SimpleOperations
_SimpleOperationsNC

These interfaces contain definitions of the Slice operations.

Client-Side Slice-to-Java Mapping The Proxy Interface

Copyright © 2005-2010 ZeroC, Inc. 4.21

4-17 The Proxy Interface

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-17

The Proxy Interface
An instance of a proxy interface acts as the local ambassador for a
remote object. Invoking a method on the proxy results in an RPC call to
the corresponding object in the server.
interface Simple {

void op();

};

This generates:
public interface SimplePrx extends Ice.ObjectPrx {

public void op();

public void op(java.util.Map<String, String> __ctx);

}

The version without the __ctx parameter simply calls the version with
the __ctx parameter, supplying a default context.

SimplePrx derives from Ice.ObjectPrx, so all proxies support the
operations on Ice.Object.

Notes:

The compiler generates a proxy interface for each Slice interface. In general, the name of
the proxy interface is <interface-name>Prx. If an interface is nested in a module
M, the generated class is part of package M, so the fully-qualified name is
M.<interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambassador for a
remote instance of the Simple interface in a server and is known as a proxy instance.
All the details about the server-side object, such as its address, what protocol to use, and
its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the fact that all Ice
interfaces implicitly inherit from Object.

Client-Side Slice-to-Java Mapping The Proxy Interface

Copyright © 2005-2010 ZeroC, Inc. 4.22

For each operation in the interface, the proxy class has a member function of the same
name.1 For the preceding example, we find that the operation op has been mapped to the
member function op. Also note that op is overloaded: the second version of op has a
parameter __ctx of type java.util.Map<String,String>. This parameter is
for use by the Ice run time to store information about how to deliver a request. You
normally do not need to use it

Because all the <interface-name>Prx types are interfaces, you cannot instantiate
an object of such a type. Instead, proxy instances are always instantiated on behalf of the
client by the Ice run time, so client code never has any need to instantiate a proxy
directly. The proxy references handed out by the Ice run time are always of type
<interface-name>Prx; the concrete implementation of the interface is part of the
Ice run time and does not concern application code.

1 Note that the operations are actually inherited from the _SimpleOperations and
_SimpleOperationsNC base interfaces; for simplicity we show them as if they were part of the proxy
interface.

Client-Side Slice-to-Java Mapping Methods on Ice.ObjectPrx

Copyright © 2005-2010 ZeroC, Inc. 4.23

4-18 Methods on Ice.ObjectPrx

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-18

Methods on Ice.ObjectPrx
Ice.ObjectPrx is defined as follows:
package Ice;

public interface ObjectPrx {

boolean equals(java.lang.Object r);

int hashCode();

Identity ice_getIdentity();
boolean ice_isA(String __id);

String ice_id();
String[] ice_ids();

void ice_ping();

// ...

}

Every Ice object supports these operations.

Notes:

Ice.ObjectPrx provides a number of operations that are supported by all Ice objects:

 equals

This operation compares two proxies for equality. Note that all aspects of proxies
are compared by this operation, such as the communication endpoints for the
proxy. This means that, in general, if two proxies compare unequal, that does not
imply that they denote different objects. For example, if two proxies denote the
same Ice object via different transport endpoints, equals returns false even
though the proxies denote the same object.

 hashCode

This method returns a hash value for the proxy.

 ice_getIdentity

This method returns the identity of the object denoted by the proxy. The identity
of an Ice object has the following Slice type:
module Ice {
 struct Identity {
 string name;
 string category;
 };

Client-Side Slice-to-Java Mapping Methods on Ice.ObjectPrx

Copyright © 2005-2010 ZeroC, Inc. 4.24

};

To see whether two proxies denote the same object, first obtain the identity for
each object and then compare the identities:
Ice.ObjectPrx o1 = ...;
Ice.ObjectPrx o2 = ...;

Ice.Identity i1 = o1.ice_getIdentity();
Ice.Identity i2 = o2.ice_getIdentity();
if (i1.equals(i2))
 // o1 and o2 denote the same object
else
 // o1 and o2 denote different objects

 ice_isA

This method determines whether the object denoted by the proxy supports a
specific interface. The argument to ice_isA is a type ID. (Refer to Section 2-
39.)

For example, to see whether a proxy of type ObjectPrx denotes a Printer
object, we can write:
Ice.ObjectPrx o = ...;
if (o != null && o.ice_isA("::Printer"))
 // o denotes a Printer object
else
 // o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke the
ice_isA method. This avoids getting a NullPointerException if the
proxy is null.

 ice_id

This method returns the type ID of the object denoted by the proxy. Note that the
type returned is the type of the actual object, which may be more derived than the
static type of the proxy. For example, if we have a proxy of type BasePrx, with
a static type ID of ::Base, the return value of ice_id might be ::Base, or it
might something more derived, such as ::Derived.

 ice_ids

This method returns an array of strings representing all of the type IDs that the
object denoted by the proxy supports, including ::Ice::Object.

 ice_ping

This method provides a basic reachability test for the object. If the object can
physically be contacted (that is, the object exists and its server is running and
reachable), the call completes normally; otherwise, it throws an exception that
indicates why the object could not be reached, such as
ObjectNotExistException or ConnectTimeoutException.

Client-Side Slice-to-Java Mapping Methods on Ice.ObjectPrx

Copyright © 2005-2010 ZeroC, Inc. 4.25

The ice_isA, ice_id, ice_ids, and ice_ping methods make invocations on the
remote Ice object (asynchronous versions of these methods are also available). The
remaining proxy methods, along with many others not listed above, operate on the local
proxy object. See the Ice manual for more information on the methods supported by
proxy objects.

Client-Side Slice-to-Java Mapping Proxy Helpers

Copyright © 2005-2010 ZeroC, Inc. 4.26

4-19 Proxy Helpers

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-19

Proxy Helpers
For each interface, the compiler generates a helper class that allows
you to do type-safe down-casts:
public final class SimplePrxHelper extends Ice.ObjectPrxHelper {

public static SimplePrx checkedCast(Ice.ObjectPrx b);

public static SimplePrx checkedCast(
Ice.ObjectPrx b,

java.util.Map<String, String> ctx);

public static SimplePrx uncheckedCast(Ice.ObjectPrx b);

// ...

}

Both casts test an is-a relationship.

• A checkedCast checks with the server whether the object actually
supports the specified type and so requires sending a message.

• An uncheckedCast is a sledgehammer cast (so you had better get it
right!) but does not require sending a message.

Notes:

Given a proxy of any type, you can use a checkedCast to test whether the proxy
supports a specific interface, serving a purpose similar to Java’s instanceof operator.
For example:
Ice.ObjectPrx obj = ...; // Get a proxy from somewhere...

SimplePrx simple = SimplePrxHelper.checkedCast(obj);
if (simple != null)
 // Object supports the Simple interface...
else
 // Object is not of type Simple...

A checkedCast returns a non-null proxy if the passed proxy supports the specified
interface and a null proxy otherwise. Note that a checkedCast contacts the server, so
the server must be running and the proxy must denote an existing object for the
checkedCast to succeed. If the target object cannot be contacted, checkedCast
throws an exception.

Client-Side Slice-to-Java Mapping Proxy Helpers

Copyright © 2005-2010 ZeroC, Inc. 4.27

An uncheckedCast, on the other hand, is a local operation and does not contact the
server, so it is not verified in any way. Use an uncheckedCast only if you are certain
that a proxy denotes an object that supports the interface you are casting to. Incorrect use
of an uncheckedCast causes undefined behavior, often resulting in a run-time
exception. You can also end up with an operation invocation that succeeds but does
something completely unexpected (such as being invoked on the wrong object).

Note: Normally, you use the single-argument version of checkedCast. You will rarely
(if ever) need to use the version with the ctx parameter. Please consult the Ice manual
for details.

Client-Side Slice-to-Java Mapping Mapping for Operations

Copyright © 2005-2010 ZeroC, Inc. 4.28

4-20 Mapping for Operations

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-20

Mapping for Operations
Slice operations map to methods on the proxy interface.
interface Simple {

void op();

};

Invoking a method on the proxy instance invokes the operation
in the remote object:
SimplePrx p = ...;

p.op(); // Invoke remote op() operation

The mapping is the same, regardless of whether an operation is
a normal operation or has an idempotent qualifier.

Notes:

As we saw in Section 4-174.19, each Slice operation maps to a pair of methods on the
proxy interface. To invoke an operation, you call the method on the proxy instance like
any other Java method. The generated code and the Ice run time take care of getting the
invocation to the correct object in the server.

Normal and idempotent operations have the same signature.

Client-Side Slice-to-Java Mapping Mapping for Return Values and In-Parameters

Copyright © 2005-2010 ZeroC, Inc. 4.29

4-21 Mapping for Return Values and In-Parameters

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-21

Mapping for Return Values and In-Parameters

Return values and In-parameters are passed either by value (for
simple types), or by reference (for complex types).
interface Example {

string op(double d, string s);

};

The proxy operation is:
String op(double d, String s);

You invoke the operation like any other Java method:
ExamplePrx p = ...;

String result = p.op(3.14, "Hello");

System.out.writeln(result);

• To pass a null proxy, pass a null reference.

• You can pass a null parameter for strings, sequences, and
dictionaries to pass the empty string, sequence, or dictionary.

Notes:

Return values and in-parameters are passed as you would expect: by value for simple
types, and by reference for complex types. (Of course, you must initialize in-parameters
for a sensible value to be sent to the server.)

The Java mapping uses a Java null reference as the null proxy, so you can pass a null
proxy by passing a Java null reference.

It is legal to pass a null reference where a string, sequence, or dictionary is expected. In
that case, the receiver gets an empty string, an empty sequence, or an empty dictionary,
respectively. This feature is provided for convenience: especially for sequences of deeply
nested data structures, it is useful not to have to recursively initialize every member
before passing the sequence to a Slice operation.

Client-Side Slice-to-Java Mapping Mapping for Out-Parameters

Copyright © 2005-2010 ZeroC, Inc. 4.30

4-22 Mapping for Out-Parameters

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-22

Mapping for Out-Parameters
Out-parameters are passed via a Holder type:

• Built-in types are passed as Ice.ByteHolder, Ice.IntHolder,
Ice.StringHolder, etc. User-defined types are passed as
<name>Holder.

All holder classes have a public value member, for example:
package Ice;

public final class StringHolder {
public StringHolder() {}
public StringHolder(String value) {

this.value = value;
}
public String value;

}

You pass a holder instance where an out-parameter is expected; when
the operation completes, the value member contains the returned
value.

Notes:

Because Java does not allow passing of parameters by reference, out-parameters are
passed as a reference to a Holder class. The Holder class contains a value member
that is assigned to by the operation. For the Slice built-in types, the Holder classes are
Ice.ByteHolder, Ice.IntHolder, Ice.StringHolder, and so on. For user-
defined types, the holder class is generated as <name>Holder.

Each holder class has a default constructor that default-initializes the value member,
and a single-argument constructor that initializes the value member with the supplied
value.

Note that holder classes are generated for every Slice type. For example, by default, the
compiler does not generate a Java type for a Slice sequence because sequences map to
arrays. However, the compiler does generate a holder type for each sequence; the holder
class’ value member is simple an array of the sequence’s element type.

You can pass out-parameters as you would any other Java holder type, for example:
interface Example {
 void op(out string s);
};

Client-Side Slice-to-Java Mapping Mapping for Out-Parameters

Copyright © 2005-2010 ZeroC, Inc. 4.31

You could call the operation as follows:
ExamplePrx p = ...;
Ice.StringHolder s = new Ice.StringHolder();
p.op(s);
System.out.writeln(s.value);

Client-Side Slice-to-Java Mapping Exception Handling

Copyright © 2005-2010 ZeroC, Inc. 4.32

4-23 Exception Handling

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-23

Exception Handling
Operation invocations can throw exceptions:
exception Tantrum { string reason; };

interface Child {

void askToCleanUp() throws Tantrum;

};

You can call askToCleanUp like this:
ChildPrx child = ...; // Get proxy...

try {

child.askToCleanUp(); // Give it a try...

} catch (Tantrum t) {

System.out.writeln("The child says: " + t.reason);

}

Exception inheritance allows you to handle errors at different levels with
handlers for base exceptions at higher levels of the call hierarchy.
The value of out-parameters if an exception is thrown is undefined.

Notes:

If an operation throws an exception, you catch the exception as you would any other Java
exception.

Of course, you can install exception handlers at different levels of the call hierarchy. For
example, you can catch a specific exception at the point of call, and deal with other
exceptions generically:
public class Client {
 static void run() {
 ChildPrx child = ...; // Get child proxy...
 try {
 child.askToCleanUp();
 } catch (Tantrum t) {
 System.out.print("The child says: ");
 System.out.println(t.reason);
 child.scold(); // Recover from error...
 }
 child.praise(); // Give positive feedback...
 }

Client-Side Slice-to-Java Mapping Exception Handling

Copyright © 2005-2010 ZeroC, Inc. 4.33

 public static void
 main(String[] args)
 {
 try {
 // ...
 run();
 // ...
 } catch (Ice.LocalException e) {
 e.printStackTrace();
 } catch (Ice.UserException e) {
 System.err.println(e.getMessage());
 }
 }
}

Note that catching Ice.LocalException catches all run-time exceptions, and
catching Ice.UserException catches all user exceptions.

If an operation has out-parameters and throws an exception, the values of the out-
parameters are undefined: they may still have the previous value or may have been
changed (and not necessarily to a value that was returned by the operation).

Client-Side Slice-to-Java Mapping Mapping for Classes

Copyright © 2005-2010 ZeroC, Inc. 4.34

4-24 Mapping for Classes

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-24

Mapping for Classes
Slice classes map to Java classes:

• For each Slice member (if any), the class contains a corresponding
public data member.

• If the class has operations, it is abstract and derives from the
_<name>Operations and _<name>OperationsNC interfaces. These
interfaces contain method definitions corresponding to the Slice
operations.

• The class has a default constructor and a “one-shot” constructor
with one parameter for each class member.

• Slice classes without a base class derive from Ice.Object.

• Slice classes with a base class derive from the corresponding base
class.

• All classes support the operations on Ice.Object.

Notes:

Slice classes map to Java classes. For example:
class TimeOfDay {
 short hour; // 0 - 23
 short minute; // 0 - 59
 short second; // 0 -59
 string format(); // Return time as hh:mm:ss
};

This maps to the following Java definitions:
public interface _TimeOfDayOperations {
 String format(Ice.Current current);
}

public interface _TimeOfDayOperationsNC {
 String format();
}

Client-Side Slice-to-Java Mapping Mapping for Classes

Copyright © 2005-2010 ZeroC, Inc. 4.35

public abstract class TimeOfDay extends Ice.ObjectImpl
 implements _TimeOfDayOperations,
 _TimeOfDayOperationsNC
{
 public short hour;
 public short minute;
 public short second;

 public TimeOfDay() {}

 public TimeOfDay(short hour, short minute, short hour)
 {
 this.hour = hour;
 this.minute = minute;
 this.second = second;
 }

 public String format()
 {
 return format(null);
 }
 // ...
}

Note that the generated class is abstract. (For Slice classes without operations, the
generated Java class is concrete.)

The _<name>Operations base interface contains one method for each Slice
operation of the class. The operation signature is as for operations on proxies, with a
trailing parameter of type Ice.Current.2

The _<name>OperationsNC base interface (NC stands for “no Current”) also
contains a method for each Slice operation, but without the trailing Ice.Current
parameter. As you can see from the example, the “no Current” versions of the operations
are implemented by the compiler. They simply invoke the version with a Current
parameter, supplying a null reference.

The upshot of this is that, to provide an implementation of the abstract class, you must
implement the methods the class inherits from the _<name>Operations interface, but
not the ones it inherits from the _<name>OperationsNC interface.

2 We examine the purpose of this parameter in more detail in Chapter 12. For now, you can ignore it.

Client-Side Slice-to-Java Mapping Mapping for Classes

Copyright © 2005-2010 ZeroC, Inc. 4.36

Also note that the generated class derives from Ice.Object (and not from
Ice.ObjectPrx). This means that you cannot pass a class where a proxy is expected
(or vice-versa) because classes and proxies have separate derivation hierarchies:

Ice.ObjectIce.ObjectPrx

Specific Run-Time Exceptions...
Specific Run-Time Exceptions...

Specific Run-Time Exceptions...
Proxies...

Specific User Exceptions...
Specific User Exceptions...

Specific User Exceptions...
Classes...

The default constructor explicitly initializes only those data members that declare default
values, while the “one-shot” constructor accepts an initial value for each data member. If
a class is derived from some other class, the one-shot constructor accepts an initial value
for each data member of the base class(es) and the derived class, in base-to-derived order.

Client-Side Slice-to-Java Mapping Inheritance from Ice.Object

Copyright © 2005-2010 ZeroC, Inc. 4.37

4-25 Inheritance from Ice.Object

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-25

Inheritance from Ice.Object
Classes support the methods on Ice.Object:
package Ice;

public interface Object
{

void ice_ping(Current current);
boolean ice_isA(String s, Current current);
String[] ice_ids(Current current);
String ice_id(Current current);

int ice_hash();
void ice_preMarshal();
void ice_postUnmarshal();

}

Notes:

All classes and interfaces inherit a number of methods from Ice.Object. The first four
methods (ice_ping, ice_isA, ice_id, and ice_ids) provide server-side
functionality and are not discussed here. The remaining methods are described below:

 int hashCode()

This method returns a hash value so you can place classes into hash tables.

 void ice_preMarshal()

The Ice run time invokes this function prior to marshaling an instance. By
overriding this function, you can, for example, validate the state of an object.

 void ice_postUnmarshal()

The Ice run time invokes this function after unmarshaling an instance. By
overriding this function, you can, for example, perform additional initialization of
the members of the implementation of an abstract class.

Client-Side Slice-to-Java Mapping Abstract Classes

Copyright © 2005-2010 ZeroC, Inc. 4.38

4-26 Abstract Classes

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-26

Abstract Classes
Classes that inherit methods from the _<name>Operations interface
are abstract, so they cannot be instantiated.

To allow abstract classes to be instantiated, you must create a class
that derives from the compiler-generated class. The derived class must
provide implementations of the operations:

public class TimeOfDayI extends TimeOfDay {
public String format(Ice.Current current) {

DecimalFormat df
= (DecimalFormat)DecimalFormat.getInstance();

df.setMinimumIntegerDigits(2);
return new String(df.format(hour) + ":" +

df.format(minute) + ":" +
df.format(second));

}
}

By convention, implementations of abstract classes have the name
<class-name>I.

Notes:

The Slice compiler cannot generate an implementation of a class with operations for you
because it does not know how to implement these operations. Instead, what is generated
is an abstract base class from which you must derived a concrete implementation class.
The concrete implementation class must provide an implementation of the methods of the
_<name>Operations interface(s). (Note that, for Slice classes without operations, the
compiler generates concrete classes, so you don’t have to implement anything in that
case.)

Note: The Ice.Current argument passed to every operation is a server-side construct
that we’ll explore later.

Client-Side Slice-to-Java Mapping Class Factories

Copyright © 2005-2010 ZeroC, Inc. 4.39

4-27 Class Factories

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-27

Class Factories
The Ice run time does not know how to instantiate an abstract class
unless you tell it how to do that:
module Ice {

local interface ObjectFactory {

Object create(string type);

void destroy();

};

// ...

};

You must implement the ObjectFactory interface and register a
factory for each abstract class with the Ice run time.

• The run time calls create when it needs to create a class instance.

• The run time calls destroy when you destroy the communicator.

Notes:

The Ice run time cannot know what Java class you have created to implement an abstract
Slice class and so cannot instantiate the implementation of an abstract class directly.
Instead, the Ice run time relies on the help of a factory instance that you implement: it is
the factory’s job to instantiate a class on behalf of the Ice run time.

Here is an implementation of the factory:
class ObjectFactory implements Ice.ObjectFactory {

 public Ice.Object create(String type) {

 assert(type.equals("::M::TimeOfDay")); // use ice_staticId here

 return new TimeOfDayI();

 }

 public void destroy() {

 // Nothing to do

 }

}

Note that the factory must implement the methods in Ice.ObjectFactory, namely
create and destroy.

Client-Side Slice-to-Java Mapping Class Factories

Copyright © 2005-2010 ZeroC, Inc. 4.40

The object factory’s create method is called by the Ice run time when it needs to
instantiate a TimeOfDay class. The argument to create is the type ID of the class to
be created.

The factory’s destroy method is called by the Ice run time when the factory’s
Communicator is destroyed.

Client-Side Slice-to-Java Mapping Factory Registration

Copyright © 2005-2010 ZeroC, Inc. 4.41

4-28 Factory Registration

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-28

Factory Registration
Once you have created a factory class, you must register it with the Ice
run time for a particular type ID:
module Ice {

local interface Communicator {

void addObjectFactory(ObjectFactory factory,

string id);

ObjectFactory findObjectFactory(string id);

// ...

};

};

When the run time needs to unmarshal an abstract class, it calls the
factory’s create method to create the instance.

It is legal to register a factory for a non-abstract Slice class. If you do
this, your factory overrides the one that is generated by the Slice
compiler.

Notes:

Once you have created a class factory, you must inform the Ice run time for which types
it should call your factory, by calling addObjectFactory on the communicator. For
example:
Ice.Communicator ic = ...;
Ice.ObjectFactory of = new TimeOfDayFactory();
ic.addObjectFactory(of, "::M::TimeOfDay");

If you try to register more than one factory for the same type ID, addObjectFactory
throws AlreadyRegisteredException. It is legal to register the same factory for
multiple type IDs. In this case, when the communicator is destroyed, destroy is called
on your factory once for each type ID the factory is registered for.

findObjectFactory allows you to retrieve the factory for a type ID. The operation
returns null if no factory is registered for the given type ID.

You can also register a factory for a non-abstract Slice class. If you do this, your factory
will be used in preference to the Slice-generated factory.

Note that, instead of using a hard-wired type ID string, you should obtain the type ID of a
class by calling its static ice_staticId function to avoid errors due to typos:

ic.addObjectFactory(of, M.TimeOfDay.ice_staticId());

Client-Side Slice-to-Java Mapping Default Factory

Copyright © 2005-2010 ZeroC, Inc. 4.42

4-29 Default Factory

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-29

Default Factory
You can register a factory for the empty type ID as a default factory.
The Ice run time locates factories in the following order:

1. Look for a factory registered for the specific type ID. If one exists,
call create on that factory. If the return value is non-null, return the
result, otherwise try step 2.

2. Look for the default factory. If it exists, call create on the default
factory. If the return value is non-null, return the result, otherwise
try step 3.

3. Look for a Slice-generated factory (for non-abstract classes). If it
exists, instantiate the class.

4. Throw NoObjectFactoryException.

If you have both a type-specific factory and a default factory, you can
return null from the type-specific factory to redirect class creation to the
default factory.

Notes:

You can install a “catch-all” default factory by registering a factory for the empty type
ID. The Ice run time first looks for a type-specific factory and falls back on the default
factory if no type-specific factory is registered (or its create method returns null).

Client-Side Slice-to-Java Mapping Stringified Proxies

Copyright © 2005-2010 ZeroC, Inc. 4.43

4-30 Stringified Proxies

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-30

Stringified Proxies
The simplest stringified proxy specifies:

• host name (or IP address)

• port number

• an object identity

For example:
fred:tcp -h myhost.dom.com -p 10000

General syntax:
<identity>:<endpoint>[:<endpoint>...]

For TCP/IP, the endpoint is specified as:
tcp -h <host name or IP address> -p <port number>

To convert a stringified proxy into a live proxy, use:
Communicator.stringToProxy.

A null proxy is represented by the empty string.

Notes:

In order for a client to do anything with a server, it must hold a proxy to at least one
object in the server. Once the client has its initial proxy (or proxies—usually a very small
number of “bootstrap” proxies is sufficient), the client can obtain proxies to further
objects by invoking operations on the initial proxies.

The simplest way to provide an initial proxy to a client is to specify it as a string
containing the identity of the target object, the tcp protocol identifier, a host name (or IP
address), and a port number.

You convert a string into a live proxy by calling stringToProxy on the
communicator, for example:
Ice.Communicator ic = Ice.Util.initialize(args);

Ice.ObjectPrx o = ice.stringtoProxy("fred:tcp -h myhost.com -p 10000");

// Assume that object has interface M::Example

M.ExamplePrx e = M.ExamplePrxHelper.checkedCast(o);

// Invoke operation foo on object

e.foo();

Client-Side Slice-to-Java Mapping Stringified Proxies

Copyright © 2005-2010 ZeroC, Inc. 4.44

Note that the proxy returned from stringToProxy is of type ObjectPrx, so the
code must downcast to ExamplePrx before it can invoke an operation of the Example
interface.

Note: The syntax for stringified proxies supports several options as well as the
specification of indirect proxies. Refer to Chapter 16 and the Ice manual for details.

Client-Side Slice-to-Java Mapping Compiling and Running a Client

Copyright © 2005-2010 ZeroC, Inc. 4.45

4-31 Compiling and Running a Client

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

4-31

Compiling and Running a Client
To compile a client, you must:

• compile the Slice-generated source files(s)

• compile your application code

For Linux:
$ mkdir classes

$ javac -d classes -classpath \

> classes:$ICEJ_HOME/lib/Ice.jar \

> Client.java generated/Demo/*.java

To compile and run the client, Ice.jar must be in your
CLASSPATH.

Notes:

To compile a client, you must compile the generated source code and your application
code.

Note that you must have Ice.jar in your CLASSPATH to compile and run the client.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

th Java

5-2010 Zero

5
C

oC, Inc.

5 As
Cre

ssig
atin

gnm
ng

me
an
Cl

nt 2
 Ice
ien

2
e

nt

Assignment 2: Creating an Ice Client Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 5.2

5 Assignment 2: Creating an Ice Client

5-1 Exercise Overview

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc.

5-1

Exercise Overview
In this exercise, you will:

• create an Ice client to access a server that implements
the filesystem developed in Assignment 1.

By the completion of this exercise, you will have gained
experience in the Java language mapping, how to initialize
and finalize the Ice run time, how to construct proxies, and
how to invoke operations and handle exceptions.

Notes:

In this exercise, you will create an Ice client to access a server that implements the file
system we developed in Assignment 1.

5-1-1 Exercise Objectives
By the completion of this exercise, you will have gained experience in the Java language
mapping, how to initialize and finalize the Ice run time, how to construct proxies, and how to
invoke operations and handle exceptions.

Assignment 2: Creating an Ice Client Creating a Client for the Remote Filesystem

Copyright © 2005-2010 ZeroC, Inc. 5.3

5-2 Creating a Client for the Remote Filesystem

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc.

5-2

Creating a Client for the Remote Filesystem

• In your lab2 directory, you will find a build.xml file to build
a client and a server.

• The server is complete and implements the file system
defined in Filesystem.ice.

• The server listens on port 10000 for incoming requests;
the identity of the root directory object is “RootDir”.

Notes:

In your lab2 directory, you will find a build.xml file to build a client and a server. The
server is complete and implements the file system defined in Filesystem.ice. The
server listens on port 10000 for incoming requests; the identity of the root directory object is
“RootDir”.

Assignment 2: Creating an Ice Client What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 5.4

5-3 What You Need to Do

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc.

5-3

What You Need to Do
The client code can be found in Client.java.
1. In the body of main, initialize the Ice run time, create a

proxy to the root directory, and pass that proxy to the
listRecursive function.

2. Following the call to listRecursive, shut down the Ice run
time.

3. The body of listRecursive is empty, so you need to
provide an implementation.

4. Test your client against the provided server.
5. Try running the client without first starting the server.
6. Change the client to use the identity “Fred” for the root

directory.

Notes:

The client code can be found in Client.java. The code compiles as-is, but is incomplete.
(The places in the code where you need to add something are marked with a // MISSING
comment.)

1. In the body of main, initialize the Ice run time, create a proxy to the root directory, and
pass that proxy to the listRecursive function.

2. Following the call to listRecursive, shut down the Ice run time. Be sure to handle
and print any exceptions.

3. The body of listRecursive is empty, so you need to provide an implementation.
listRecursive shows the contents of its dir argument: for each entry in the
directory, it should print whether the entry is a file or a directory. If the entry is a file,
listRecursive should show the name of the file and print the file’s contents. If the
entry is a directory, listRecursive should show the name of the directory and,
recursively, show the contents of that directory.

The output of listRecursive should be somewhat like the output of an ls -R
command, except that for files, listRecursive also prints the contents of each file.
(You can use the indent variable to indent each line of output according to the depth of
the recursion.)

Assignment 2: Creating an Ice Client What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 5.5

Note that the File::read operation will occasionally raise an IOError exception.
Your code should catch this exception and retry the read operation. (The server
randomly raises IOError so the retry will eventually succeed.)

4. Test your client against the provided server. If your client works correctly, it should find
two files and one directory underneath the root directory.

5. Try running the client without first starting the server. Does your client handle the
situation correctly?

6. Change the client to use the identity “Fred” for the root directory. Is your client’s
behavior acceptable in this case?

Assignment 2: Creating an Ice Client The main Method

Copyright © 2005-2010 ZeroC, Inc. 5.6

5-4 The main Method

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc.

5-4

The main Method
Note that the code catches and handles any exceptions,
and that the communicator is destroyed only if it was
successfully initialized.

Notes:

The main function for the client is as follows:
public static void

main(String[] args)

{

 int status = 0;

 Ice.Communicator ic = null;

 try

 {

 // Create a communicator

 //

 ic = Ice.Util.initialize(args);

 // Create a proxy for the root directory

 //

 Ice.ObjectPrx base = ic.stringToProxy("RootDir:default -p 10000");

 // Down-cast the proxy to a Directory proxy

 //

 DirectoryPrx rootDir = DirectoryPrxHelper.checkedCast(base);

Assignment 2: Creating an Ice Client The main Method

Copyright © 2005-2010 ZeroC, Inc. 5.7

 if(rootDir == null)

 throw new RuntimeException("Invalid proxy");

 // Recursively list the contents of the root directory

 //

 System.out.println("Contents of root directory:");

 listRecursive(rootDir, 0);

 }

 catch(Ice.LocalException e)

 {

 e.printStackTrace();

 status = 1;

 }

 catch (Exception e)

 {

 e.printStackTrace();

 status = 1;

 }

 if(ic != null) {

 // Clean up

 //

 try

 {

 ic.destroy();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 status = 1;

 }

 }

 System.exit(status);

}

Note that the code catches and handles any exceptions, and that the communicator is
destroyed only if it was successfully initialized.

Assignment 2: Creating an Ice Client The listRecursive Method

Copyright © 2005-2010 ZeroC, Inc. 5.8

5-5 The listRecursive Method

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc.

5-5

The listRecursive Method
Note that the code, for each proxy returned by list, uses
an uncheckedCast to down-cast the proxy. This avoids
the overhead of using a checkedCast, which requires a
remote message.

Notes:

static void
listRecursive(DirectoryPrx dir, int depth)
{
 char[] indentCh = new char[++depth];
 java.util.Arrays.fill(indentCh, '\t');
 String indent = new String(indentCh);

 NodeDetails[] contents = dir.list();

 for(int i = 0; i < contents.length; ++i)
 {
 System.out.println(indent + contents[i].name + "(" +
 (contents[i].type == NodeType.DirT
 ? "directory" : "file") + "):");
 if(contents[i].type == NodeType.DirT)
 {
 DirectoryPrx subdir =
 DirectoryPrxHelper.uncheckedCast(contents[i].proxy);
 listRecursive(subdir, depth);
 }
 else
 {
 FilePrx file = FilePrxHelper.uncheckedCast(contents[i].proxy);

Assignment 2: Creating an Ice Client The listRecursive Method

Copyright © 2005-2010 ZeroC, Inc. 5.9

 boolean error = true;
 do
 {
 try
 {
 String[] text = file.read();
 for (int j = 0; j < text.length; ++j)
 {
 System.out.println(indent + "\t" + text[j]);
 }
 error = false;
 }
 catch(IOError e)
 {
 System.out.println("Caught IO error: " + e.reason
 + " Retrying...");
 }
 }
 while(error);
 }
 }
}

Note that the code, for each proxy returned by list, uses an uncheckedCast to down-
cast the proxy. This avoids the overhead of using a checkedCast, which requires a remote
message.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

th Java

5-2010 Zero

J

oC, Inc.

6 S
Jav

Ser
va M

rver
Ma

r-S
app

ide
ping

e
g

Server-Side Slice-to-Java Mapping Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 6.2

6 Server-Side Slice-to-Java Mapping

6-1 Lesson Overview

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-1

Lesson Overview
• This lesson presents:

– the mapping from Slice to Java relevant to the server
side.

– the relevant APIs that are necessary to initialize and
finalize the Ice run time

– how to implement and register object implementations.

• By the end of this lesson, you will be able to write a
working Ice server.

Notes:

This unit presents the mapping from Slice to Java relevant to the server side. It includes
the relevant APIs that are necessary to initialize and finalize the Ice run time, and how to
implement and register object implementations.

6-1-1 Lesson Objectives
By the end of this lesson, you will be able to write a working Ice server.

Server-Side Slice-to-Java Mapping Server-Side Java Mapping

Copyright © 2005-2010 ZeroC, Inc. 6.3

6-2 Server-Side Java Mapping

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-2

Server-Side Java Mapping
All of the client-side Java mapping also applies to the
server side.

Additional server-side functionality you must know about:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the run
time

Notes:

The mapping of Slice types to Java types on the server side is identical to the client side,
so everything that you have learned in Chapter 4 is valid for the server side as well.

However, for servers, we need to cover a few additional topics, such as the extra
initialization steps and finalization steps that are required, as well as how to implement
and create servants, how to register servants with the Ice run time, and how to pass
parameters and throw exceptions.

Server-Side Slice-to-Java Mapping Initializing the Ice Run Time

Copyright © 2005-2010 ZeroC, Inc. 6.4

6-3 Initializing the Ice Run Time

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-3

Initializing the Ice Run Time
public class Server {

public static void
main(String[] args)
{

int status = 1;
Ice.Communicator ic = null;
try {

ic = Ice.Util.initialize(args);
// server code here...
status = 0;

} catch (Exception e) {
}
if (ic) {

try {
ic.destroy();

} catch (java.lang.Exception ex)
}

}
System.exit(status);

}
}

Notes:

The basic structure of the code in main for a server is identical to the client side: create a
communicator by calling Ice.Util.initialize and, if initialization was successful,
destroy the communicator again.

However, where the above code shows:
// server code here...

servers require some additional initialization and finalization steps.

Server-Side Slice-to-Java Mapping Server-Side Initialization

Copyright © 2005-2010 ZeroC, Inc. 6.5

6-4 Server-Side Initialization

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-4

Server-Side Initialization
Servers must create at least one object adapter, activate that adapter,
and then wait for the Ice run time to shut down:
ic = Ice.Util.initialize(args);

Ice.ObjectAdapter adapter

= ic.createObjectAdapterWithEndpoints(

"MyAdapter", "tcp -p 10000");

// Instantiate and register one or more servants here...

adapter.activate();

ic.waitForShutdown();

An object adapter provides one or more endpoints at which the server
listens for incoming requests. An adapter has a name that must be
unique within its communicator.

Adapters must be activated before they start accepting requests.

You must call waitForShutdown from the main thread to wait for the
server to shut down (or otherwise prevent the main thread from exiting).

Notes:

Every server must create at least one object adapter. An object adapter has one or more
endpoints at which the server listens for requests. Every adapter has a name
(MyAdapter, in this example) which must be unique within the communicator, that is,
no two adapters within a single communicator can have the same name. (In general, it is a
good idea to ensure that adapter names are globally unique—see Section 12-9.)

Before an adapter can receive an incoming request from a client, you must activate it.
Activating the adapter causes the server to listen for incoming connection requests at the
endpoint specified for the adapter.

Internally, the Ice run time maintains one or more threads that accept and process
incoming requests. To prevent your server’s main thread from falling off the end of main
and terminating the server process, you can pass the main thread to the Ice run time by
calling waitForShutdown on the communicator. This call blocks the calling thread
until the server has decided to terminate (possibly in response to a signal or in response to
a request from a client). When waitForShutdown completes, you know that the server
is idle, that is, that all incoming operation invocations have completed. Note however that
calling waitForShutdown is not a requirement but rather simply a convenient way to
prevent the main thread from terminating prematurely.

Server-Side Slice-to-Java Mapping Mapping for Interfaces

Copyright © 2005-2010 ZeroC, Inc. 6.6

6-5 Mapping for Interfaces

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-5

Mapping for Interfaces
Interfaces map to skeleton classes with an abstract method for each
Slice operation:
module M {

interface Simple {
void op();

};

};

This generates:
package M;
public interface _SimpleOperations
{

void op(Ice.Current current);
}
public interface Simple extends Ice.Object,

_SimpleOperations,
_SimpleOperationsNC;

public abstract class _SimpleDisp
extends Ice.ObjectImpl
implements Simple;

Notes:

Each Slice interface maps to a skeleton class with the name _<name>Disp. The
skeleton class contains an abstract method for each operation in the Slice interface.

You create a servant class by deriving a concrete implementation from the abstract
skeleton and implementing each inherited method. Once you have instantiated a servant
and registered it with the Ice run time, a client calling operation op causes the server-side
run time to transfer control to your concrete op method, thereby passing control from the
Ice run time to your application. For example:
public final class SimpleI extends _SimpleDisp {
 public void op(Ice.Current c)
 {
 System.out.println("op was called");
 }
}

For the moment, you can ignore the trailing parameter of type Ice.Current. We
discuss it in detail in Section 12-4.

Server-Side Slice-to-Java Mapping Mapping for Interfaces

Copyright © 2005-2010 ZeroC, Inc. 6.7

Note that the SimpleI class is a fully functional servant class. If a client invokes the op
operation on a proxy of type Simple, the server will print “op was called” on its standard
output.

As for class implementations, servant classes use the interface name with an I-suffix.
This is only a convention—you can give your servant classes any name you deem
suitable.

Server-Side Slice-to-Java Mapping Mapping for Interfaces (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 6.8

6-6 Mapping for Interfaces (cont. 1)

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-6

Mapping for Interfaces (1)
You must implement all abstract methods that are inherited from
the skeleton class.

You can add whatever else you need to support your
implementation:

• constructors and finalizers

• public or private methods

• public or private data members

• other base interfaces

Notes:

As far as the Ice run time is concerned, you need only implement the methods that you
inherit from the skeleton class. However, for all but the simplest servants, you will
probably want additional functionality, such as constructors, member functions, data
members, or additional base interfaces. You are free to add these as needed. For example,
here is the previous servant implementation once more, using a constructor and a data
member to customize the message that is printed when a client calls operation op:

public final class SimpleI extends _SimpleDisp {
 public SimpleI(String msg)
 {
 _msg = msg;
 }
 public void op(Ice.Current c)
 {
 System.out.println(_msg);
 }
 private String _msg;
}

Server-Side Slice-to-Java Mapping Mapping for Parameters

Copyright © 2005-2010 ZeroC, Inc. 6.9

6-7 Mapping for Parameters

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-7

Mapping for Parameters
Server-side operation signatures are identical to the client-side
operation signatures (except for a trailing parameter):

• In-parameters are passed by value or by reference.

• Out-parameters are passed by holder types.

• Return values are passed by value or by reference.

• Every operation has a single trailing parameter of type
Ice.Current.

string op(int a, string b, out float c, out string d);

Maps to:
String op(int a, String b,

Ice.FloatHolder c, Ice.StringHolder d,

Ice.Current __current);

Notes:

The parameter passing rules for the server side mirror those of the client side: in-
parameters are passed by value or reference, out-parameters are passed as holder types,
and return values are passed by value or reference.

An implementation of the above operation might look as follows:
public String op(int a, String b, Ice.FloatHolder c, Ice.StringHolder d,
 Ice.Current c)
{

 System.out.println("a = " + a); // In-parameters are initialized

 System.out.println("b = " + b); // by the client.

 c.value = 3.14; // Return 3.14 to client.

 d.value = "param d"; // Return "param d" to client.

 return "return value"; // Return "return value" to client.

}

Again, there is nothing unusual here: you implement the operation just as you would write
any other Java method with these parameter types.

Server-Side Slice-to-Java Mapping Throwing Exceptions

Copyright © 2005-2010 ZeroC, Inc. 6.10

6-8 Throwing Exceptions

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-8

Throwing Exceptions
exception GenericError { string reason; };

interface Example {

void op() throws GenericError;

};

You could implement op as:
public void op(Ice.Current c) throws GenericError

{

throw new GenericError("something failed");

}

Do not throw Ice run-time exceptions. You can throw
ObjectNotExistException, OperationNotExistException, or
FacetNotExistException, which are returned to the client unchanged.
But these have specific meaning and should not be used for anything
else.

If you throw any other run-time exception, the client will get an
UnknownLocalException or UnknownException.

Notes:

To throw an exception, you simply instantiate the exception and throw it.

Note that you must take care to only throw exceptions that are specified in an operation’s
exception specification. If you throw a user exception that is not part of the exception
specification, the client receives an UnknownUserException.

Even though you can throw Ice run-time exceptions, you should avoid doing so. The only
run-time exceptions that can be returned to a client are ObjectNotExistException,
OperationNotExistException, and FacetNotExistException. However,
these exceptions have very specific meaning and are normally thrown for you by the
server-side run time when the corresponding error condition is detected. If you throw any
other Ice run-time exception, it is returned to the client as an
UnknownLocalException, which does not tell the client anything other than that
something has failed.

If you allow a non-Ice exception (such as ClassCastException) to escape from an
operation implementation, the client receives an UnknownException.

Server-Side Slice-to-Java Mapping Tie Classes

Copyright © 2005-2010 ZeroC, Inc. 6.11

6-9 Tie Classes

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-9

Tie Classes
Tie classes are an alternative mechanism for implementing servants.

The --tie option for slice2java generates tie classes in addition to the
normal server-side code.

Tie classes replace inheritance with delegation. This way, your implementation
class need not inherit from the skeleton class:

Use the tie mapping when your implementation class must inherit from some
other application class (and therefore cannot be derived from the skeleton
class).

_NodeDisp
«interface»

_NodeOperations
«interface»

_NodeTie NodeI

Skeleton
Class

Tie
Class

Implementation
Class

Notes:

If you add the --tie option to slice2java, the compiler generates an additional tie
class for the server side. The tie class allows you to implement servants without having to
derive the servant class from the skeleton class. The tie class delegates operation
invocations to your implementation class, which, because it no longer derives from the
skeleton class, is now free to derive from some other base class.

Here is the generated tie class for the Simple interface:
public class _SimpleTie extends _SimpleDisp implements Ice.TieBase

{

 public _SimpleTie();

 public _SimpleTie(_SimpleOperations delegate);

 public java.lang.Object ice_delegate();

 public void ice_delegate(java.lang.Object delegate);

 public boolean equals(java.lang.Object rhs);

 public int hashCode();

 public void op(Ice.Current __current);

Server-Side Slice-to-Java Mapping Tie Classes

Copyright © 2005-2010 ZeroC, Inc. 6.12

}

As for the normal skeleton mapping, the tie contains one method for each Slice operation,
and derives from _SimpleDisp. In other words, the generated tie class is the servant
class; it forwards each operation invocation to your implementation class (the delegate).
The constructor is overloaded so you can set the delegate at construction time. In addition,
the ice_delegate methods allow you to set and get the delegate reference. When you
set the delegate, you must pass a reference to an object that implements the
_SimpleOperations interface, otherwise, the implementation throws a
ClassCastException.1

Using the generated tie, we can implement the delegate as follows:
public final class SimpleI implements _SimpleOperations
{
 public SimpleI(String msg)
 {
 _msg = msg;
 }

 public void op(Ice.Current __current)
 {
 System.out.println(_msg);
 }

 private String _msg;
}

Note that this is identical to the previous implementation, except that the delegate does not
derive from _SimpleDisp.

To instantiate a tie and its delegate, you can write:
SimpleI s = new SimpleI("Hello");
M._SimpleTie servant = new M._SimpleTie(s);

Alteratively, you can default-construct the tie and set the delegate later:
_SimpleTie servant = new _SimpleTie(); // Create tie
// ...
SimpleI s = new SimpleI("Hello"); // Create delegate
// ...
servant.ice_delegate(s); // Set delegate

Note that, by default, there is no way to get back from the delegate to the tie. If you need
to access the tie instance from within a delegate instance, you must arrange for this
yourself, for example, by passing a reference to the tie to the constructor of the delegate.

1 The formal parameter type is java.lang.Object because ice_delegate is defined in the
TieBase class.

Server-Side Slice-to-Java Mapping Creating an Object Adapter

Copyright © 2005-2010 ZeroC, Inc. 6.13

6-10 Creating an Object Adapter

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-10

Creating an ObjectAdapter
Each server must have at least one object adapter. You create an
adapter with:
local interface ObjectAdapter;

local interface Communicator {

ObjectAdapter createObjectAdapter(string name);

ObjectAdapter createObjectAdapterWithEndpoints(

string name,

string endpoints);

// ...

};

The endpoints at which the adapter listens are taken from configuration
(first version), or from the supplied argument (second version).

Example endpoint specification:
tcp -p 10000:udp -p 10000:ssl -p 10001

Endpoints have the general form:
<protocol> [-h <host>] [-p <port>] [-t timeout] [-z]

Notes:

A server must have at least one object adapter. The adapter must have a name that is
unique within its communicator. (No two adapters created on the same communicator can
have the same name.)

createObjectAdapter looks at the configuration of the server to determine which
endpoints to listen on. The endpoints are determined by the setting of the <adapter-
name>.Endpoints property. (Refer to Chapter 8 for more information on properties.)

createObjectAdapterWithEndpoints uses the endpoints that are specified by
the endpoints parameter.

The -h option in an endpoint specifies the interface on which the server listens for
incoming requests. Omitting this option, or using -h 0.0.0.0 or -h *, causes the
server to listen on all interfaces, including the loopback interface (127.0.0.1).

The -p option specifies the port on which the server listens.

The -t option specifies a timeout for the object adapter’s network activities as well as a
default timeout for proxies created by this object adapter.

The -z option specifies that protocol compression can be used for invocations on this
endpoint.

Server-Side Slice-to-Java Mapping Object Adapter States

Copyright © 2005-2010 ZeroC, Inc. 6.14

6-11 Object Adapter States

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-11

Object Adapter States
An object adapter is in one of three possible states:

• Holding (initial state after creation)

The adapter does not read incoming requests off the wire (for TCP
and SSL) and throws incoming UDP requests away.

• Active

The adapter processes incoming requests. You can transition freely
between the Holding and Active state.

• Inactive

This is the final state, entered when you initiate destruction of the
adapter:

– Requests in progress are allowed to complete.

– New incoming requests are rejected with a
ConnectionRefusedException.

Notes:

After creation, an object adapter starts out in the holding state. While in that state, TCP
and SSL requests are queued in the transport layer because the adapter does not read any
requests off the wire. Note that leaving an adapter in the holding state for a long time can
cause clients to eventually block, because TCP/IP flow control may eventually result in
the client’s transmit buffers filling up, with the client being suspended in a write system
call. For UDP requests, it is operating system dependent how many UDP requests that
were sent by clients are queued in the server’s transport stack.

Typically, you first create an object adapter, then register your servants with it and
perform any other necessary initialization, and then, once the server is fully initialized,
activate the adapter to start the flow of requests.

The inactive state is the final state of an object adapter. It is not possible to transition from
the inactive state to any of the other states. However, you can re-create a deactivated
adapter after destroy has completed.

Server-Side Slice-to-Java Mapping Controlling Adapter State

Copyright © 2005-2010 ZeroC, Inc. 6.15

6-12 Controlling Adapter State

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-12

Controlling Adapter State
The following operations on the adapter relate to its state:
local interface ObjectAdapter {

void activate();

void hold();

void deactivate();
void waitForHold();
void waitForDeactivate();
void destroy();

// ...

};

The operations to change state are non-blocking.

If you want to know when a state transition is complete, call
waitForHold or waitForDeactivate as appropriate.

destroy blocks until deactivation completes.

You can re-create an adapter with the same name once destroy
completes.

Notes:

The adapter provides the activate, hold, and deactivate operations to allow you
to control its state.

Note that the operations are non-blocking, that is, they initiate a state transition but do not
wait for it to complete. If you want to know when a state transition is complete, you must
call waitForHold or waitForDeactivate. These operations suspend the calling
thread until the corresponding transition is complete. In both cases, the state transition
completes once the last request in progress has completed, that is, once no more
invocations are in progress.

You can call waitForHold or waitForDeactivate from multiple threads.

Calling destroy implicitly calls deactivate followed by waitForDeactivate,
that is, destroy blocks until deactivation has completed. Once destroy returns, the
object adapter no longer exists, so you can create another adapter with the same name
thereafter.

Server-Side Slice-to-Java Mapping Object Identity

Copyright © 2005-2010 ZeroC, Inc. 6.16

6-13 Object Identity

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-13

Object Identity
Each Ice object has an associated object identity.

Object identity is defined as:
struct Identity {

string name;

string category;

};

• The name member gives each Ice object a unique name.

• The category member is primarily used in conjunction with default
servants and servant locators. If you do not use these features, the
category is usually left as the empty string.

The identity must be unique within the object adapter: no two servants
that incarnate an Ice object can have the same identity.

The combination of name and category must be unique.

An identity with an empty name denotes a null proxy.

Notes:

Each Ice object has an object identity. The object identity is embedded in proxies for the
object and, when clients make requests, is sent with the request. The object identity
determines which particular servant a request is sent to and, therefore, must be unique
within an object adapter.2

Unless you are using default servants or servant locators, the category field of an object
identity will usually be empty. (See Chapter 18 for details on default servants and servant
locators.)

2 There are reasons for why you might want to have an object identity that is globally unique—we will
discuss these in Chapter 12.

Server-Side Slice-to-Java Mapping Stringified Object Identity

Copyright © 2005-2010 ZeroC, Inc. 6.17

6-14 Stringified Object Identity

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-14

Stringified Object Identity
Two helper functions on the communicator allow you to convert
between identities and strings:
interface Communicator

{

Identity stringToIdentity(String ident);

String identityToString(Identity id);

// ...

}

Stringified identities have the form <category>/<name>, for example:
person/fred

If no slash is present, the string is used as the name, with the category
assumed to be empty.

The object adapter has a getCommunicator method that returns the
communicator. You use the communicator to convert between strings
and object identities.

Notes:

Stringified identities have the general form <category>/<name>. If a stringified
identity does not contain a slash, the string is used as the name, and the category is empty.
If a category or name contains a slash, the slash must be escaped in the stringified
identity. For example:
Factories\/Factory/Node\/File

This is the identity with the category Factories/Factory and the name
Node/File.

There are a number of other characters in stringified identities that must be escaped; you
should use the stringToIdentity and identityToString helper functions for
all identities that are not a simple sequence of printing characters.

Note that you can use the communicator to convert between strings and identities. The
object adapter has a getCommunicator method that returns the communicator:
interface ObjectAdapter

{

 Communicator getCommunicator();

 // ...

}

Server-Side Slice-to-Java Mapping The Active Servant Map (ASM)

Copyright © 2005-2010 ZeroC, Inc. 6.18

6-15 The Active Servant Map (ASM)

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-15

The Active Servant Map (ASM)
Each adapter maintains a map that maps object identities to servants:

• Incoming requests carry the object identity of the Ice object that is
the target.

• The ASM allows the server-side run time to locate the correct
servant for the request.

• Object identities must be unique per ASM.

Endpoint

Joe

Client Server

212.8.7.33

Object Adapter

Servant

Proxy

ASM

Joe

Fred

Carl

212.8.7.33 Joe

Notes:

Each object adapter maintains a data structure known as the active servant map. The
active servant map (or ASM, for short) is a lookup table that maps object identities to
servants: the lookup value is a reference to the corresponding servant. When a client sends
an operation invocation to the server, the request is targeted at a specific transport
endpoint. Implicitly, the transport endpoint identifies the object adapter that is the target
of the request (because no two object adapters can be bound to the same endpoint). The
proxy via which the client sends its request contains the object identity for the
corresponding object, and the client-side run time sends this object identity over the wire
with the invocation. In turn, the object adapter uses that object identity to look in its ASM
for the correct servant to dispatch the call to.

Server-Side Slice-to-Java Mapping Activating Servants

Copyright © 2005-2010 ZeroC, Inc. 6.19

6-16 Activating Servants

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-16

Activating Servants
To make a servant available to the Ice run time, you must activate it.
This adds an identity–servant pair to the ASM:
local interface ObjectAdapter {

Object* add(Object servant, Identity id);

Object* addWithUUID(Object servant);

// ...

};

Both operations return the proxy for the servant, for example:
SimplePrx sp = SimplePrxHelper.uncheckedCast(

adapter.add(new SimpleI("hello"),

adapter.getCommunicator().

stringToIdentity("fred")));

As soon as a servant is added to the ASM, the run time will dispatch
requests to it (assuming that the adapter is activated).

addWithUUID adds the servant to the ASM with a UUID as the name,
and an empty category.

Notes:

Activating a servant means to add an identity–servant pair to the ASM. Requests are
dispatched to the servant as soon as it is added (assuming that the adapter is active).

Both add and addWithUUID return a proxy to the servant, as type ObjectPrx. (You
need not necessarily save the return value from these calls—you can create a proxy for an
Ice object at any time, whether a servant is activated for that Ice object or not, but only if
you know the object’s identity.) If you want to use the return value, you must either store
it as type ObjectPrx, or down-cast it to the correct type (SimplePrx in this example).
Note that, because we know the type of the servant, there is no need to use a
checkedCast—an uncheckedCast is sufficient and will always be correct
(provided that you downcast to the correct type, of course).

addWithUUID adds an identity–servant pair with a UUID as the identity name, and the
empty string as the identity category. Note that you can generate UUIDs with the
java.util.UUID.randomUUID() method:

String uuid = java.util.UUID.randomUUID().toString();

Server-Side Slice-to-Java Mapping Creating Proxies

Copyright © 2005-2010 ZeroC, Inc. 6.20

6-17 Creating Proxies

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-17

Creating Proxies
You can create a proxy without activating a servant for the proxy:
interface ObjectAdapter {

// ...

Object* createProxy(Identity id);

};

The returned proxy contains the passed identity and the
adapter’s endpoints.

Note that the return type is Object* so, typically, you need to
downcast the proxy before you can use it.

Notes:

add and addWithUUID return the proxy for a servant as you activate the servant.
However, you can also create a proxy “out of thin air” without activating a servant, by
calling createProxy on the object adapter.

The returned proxy contains the passed identity and the adapter’s endpoints.

Creating proxies without activating a servant can be useful, for example, to implement
collection manager operations that return sequences of proxies. createProxy is
particularly useful if you use servant locators for lazy initialization (see Chapter 18).

Server-Side Slice-to-Java Mapping The Ice::Application Class

Copyright © 2005-2010 ZeroC, Inc. 6.21

6-18 The Ice::Application Class

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-18

The Ice.Application Class
Ice.Application is a utility class that makes it easy to initialize and finalize
the Ice run time.
public abstract class Application

{

public Application();

public final int main(String appName, String[] args);

public final int main(String appName, String[] args,

String configFile);

public final int main(String appName, String[] args,

InitializationData id);

public abstract int run(String[] args);

public static Communicator communicator();

public static String appName();

// ...

}

You call Application.main from the real main, and implement the body of
your client or server in the run method.

Notes:

Initializing and finalizing the Ice run time is common to all Ice clients and servers, so Ice
includes a utility class that provides this code. To use Ice.Application, you derive a
class from it that implements the run method, for example:
public final class MyApplication extends Ice.Application {

 public int run(String[] args)

 {

 // Server code here...

 }

 public static void

 main(String[] args)

 {

 MyApplication app = new MyApplication();

 int status = app.main("MyApplication", args);

 System.exit(status);

 }

}

Server-Side Slice-to-Java Mapping The Ice::Application Class

Copyright © 2005-2010 ZeroC, Inc. 6.22

Using the Application class, your main function simply instantiates your derived
class and returns the result of calling Application.main to the operating system. In
turn, Application.main returns whatever status is returned by your implementation
of run.

Before calling run, Application.main does the following:

1. It installs an exception handlers for java.lang.Exception:

If your run method fails to handle an exception and the stack gets wound back all the
way to Application.main, Application.main catches the exception, prints
an error message with the details of the exception on stderr, and returns a non-
zero status.

Application.main ensures that the communicator is correctly destroyed before
returning.

2. It initializes the Ice run time. You can get access to the communicator by calling the
static communicator method.

3. It scans the argument vector for options that are relevant to the Ice run time and
removes any such options. (Ice command-line options start with --Ice,
--Freeze, --Glacier2, etc.) The argument vector that is passed to your run
method therefore is free of Ice-related options and only contains options and
arguments that are specific to your application.

4. It stores the value of the appName parameter. You can get at that value by calling the
static appName method from anywhere in your code. This is useful, for example, for
error or trace messages that require the name of the program.

5. If instructed to handle signals, it creates a shutdown hook that behaves correctly in
response to a signal.

We strongly recommend that you use Ice.Application in preference to writing your
own code to initialize and finalize the Ice run time: Ice.Application ensures that the
run time is finalized correctly under all circumstances, and it simplifies your code.

Server-Side Slice-to-Java Mapping Shutdown Hook

Copyright © 2005-2010 ZeroC, Inc. 6.23

6-19 Shutdown Hook

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-19

Shutdown Hook
Ice.Application provides control of the JVM shutdown hook:
package Ice;

public enum SignalPolicy { HandleSignals, NoSignalHandling }
public abstract class Application

{
public Application();
public Application(SignalPolicy signalPolicy);
// ...
synchronized public static void destroyOnInterrupt();
synchronized public static void shutdownOnInterrupt();
synchronized public static void defaultInterrupt();

synchronized public static boolean interrupted();

}

The default behavior on interrupt is to destroy the communicator,
allowing all currently running operation invocations to complete first.

Notes:

Ice.Application also installs a JVM shutdown hook and provides methods that
specify how the hook should behave:

 destroyOnInterrupt

This function causes the shutdown hook to first shut down the server-side run
time (preventing new incoming invocations from being processed but allowing
currently executing invocations to complete) and to then destroy the
communicator. This is the default behavior when Application is instantiated
using its default constructor, or when HandleSignals is passed to the
constructor.

 shutdownOnInterrupt

This function causes the shutdown hook to shut down the server-side run time, but
it does not destroy the communicator. New incoming invocations are rejected with
an exception, but invocations that are executing when the signal arrives are
allowed to complete.

 defaultInterrupt

This function restores the default behavior.

 interrupted

Server-Side Slice-to-Java Mapping Shutdown Hook

Copyright © 2005-2010 ZeroC, Inc. 6.24

This function returns true if shutdown was caused by an exception or signal, false
otherwise. This allows you to distinguish intentional shutdown from a forced
shutdown, which is useful, for example, for logging purposes.

Note: Ice.Application is a singleton class: you can create only one instance of this
class and, because Ice.Application creates a communicator, you cannot use it for
applications that require more than one communicator. (Any additional communicators
you create yourself would not be finalized correctly on receipt of a signal.)

Server-Side Slice-to-Java Mapping Compiling and Running a Server

Copyright © 2005-2010 ZeroC, Inc. 6.25

6-20 Compiling and Running a Server

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

6-20

Compiling and Running a Server
To compile a client, you must:

• compile the Slice-generated source files(s)

• compile your application code

For Linux:
$ mkdir classes

$ javac -d classes -classpath \

> classes:$ICEJ_HOME/lib/Ice.jar \

> Server.java \

> generated/Demo/*.java

To compile and run the server, Ice.jar must be in your CLASSPATH.

Note that these commands are the same as for the client side—you
need not supply server-specific options or use a server-specific class
file or library.

Notes:

To compile and run a server, you must compile the generated source code and your
application code.

Note that you must have Ice.jar in your CLASSPATH to compile and run the server.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

th Java

5-2010 Zero

7
C

oC, Inc.

As
rea

sig
atin

gnm
ng a

S

men
an
Ser

nt 3
Ice

rver

3
e
r

Assignment 3: Creating an Ice Server Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 7.2

7 Assignment 3: Creating an Ice Server

7-1 Exercise Overview

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc.

7-1

Exercise Overview
In this exercise, you will:

• create an Ice server that implements the filesystem we
developed in Assignment 1.

By the end of this exercise, you will have gained experience
in how to implement servants and how to use the
Ice.Application class to initialize and finalize the Ice run
time.

Notes:

In this exercise, you will create an Ice server that implements the filesystem we
developed in Assignment 1.

7-1-1 Exercise Objectives
By the end of this exercise, you will have gained experience in how to implement servants
and how to use the Ice.Application class to initialize and finalize the Ice run time.

Assignment 3: Creating an Ice Server Creating a Server for the Remote Filesystem

Copyright © 2005-2010 ZeroC, Inc. 7.3

7-2 Creating a Server for the Remote Filesystem

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc.

7-2

Creating a Server for the Remote Filesystem

• In your lab3 directory, you will find a build.xml file to build
a client and a server.

• The client is complete and implements the solution shown
in Assignment 2.

• Use this client to test your server.

Notes:

In your lab3 directory, you will find a build.xml file to build a client and a server. The
client is complete and implements the solution shown in Assignment 2. You will use this
client to test your server.

Assignment 3: Creating an Ice Server What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 7.4

7-3 What You Need to Do

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc.

7-3

What You Need to Do
1. Find Server.java, Filesystem/FileI.java, and

Filesytem/DiretoryI.java. The places in the code where you need
to add something are marked with a // MISSING comment.

2. Have a look at the code in DirectoryI.java . Add the new directory to
the parent’s _contents member and then add the new directory to the
ASM.

3. Have a look at the code in FileI.java . Implement the read and write
methods. Use the relevant member variable to store the contents of the
file.

4. Implement the missing parts of Server.java.
5. Use the provided client to test your server and check that the contents of

the file system are as expected.

Notes:

The server code can be found in Server.java, Filesystem/FileI.java, and
Filesytem/DiretoryI.java. The places in the code where you need to add
something are marked with a // MISSING comment.

1. Look at the code in DirectoryI.java.

Notice that the class implements the NodeI interface.

Each directory servant has the following member variables:

• _name

This variable stores the name of the directory. The name of the root directory is
“/”.

• _parent

This variable stores a reference to the parent directory. For the root directory
(which does not have a parent directory), _parent is null.

• _myID

This variable stores the object identity of the servant.

• _contents

Assignment 3: Creating an Ice Server What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 7.5

This variable stores a hash map that maps object identities to servants. For each
file and directory contained in this directory, _contents contains a
corresponding entry. The list operation uses this map so it can return the
directory contents.

The constructor of DirectoryI initializes the _name, _parent, and _myID
members. Note that the root directory has the fixed identity “RootDir”; all other
directories use a UUID as the object identity.

Complete the body of the activate method by adding the directory as a child of the
parent directory and adding the servant to the ASM. (The addChild method allows
the child to add itself to the parent.)

Implement the body of list.

2. Look at the code in FileI.java.

Notice that the class implements the NodeI interface.

The implementation is analogous to DirectoryI. The constructor initializes the
_name, _parent, and _myID member variables.

Implement the activate method.

The implementations of the read and write methods are missing. Implement these
methods. Use the _lines member variable to store the contents of the file.

3. Implement the missing parts of Server.java:

• Add the missing code to initialize the object adapter.

• Add code to create a servant for the root directory and, within the root directory,
create a README file and a Coleridge directory. Add some text to the
README file. Inside the Coleridge directory, create a Kubla_Khan file, and
add some text to that file. Remember to call activate on each servant.

4. Use the provided client to test your server and check that the contents of the file
system are as expected.

Assignment 3: Creating an Ice Server The server Class

Copyright © 2005-2010 ZeroC, Inc. 7.6

7-4 The server Class

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc.

7-4

The Server Class

Notes:

import Filesystem.*;
public class Server extends Ice.Application
{
 public int
 run(String[] args)
 {
 // Shut down cleanly on interrupt.
 //
 shutdownOnInterrupt();

 Ice.ObjectAdapter adapter = communicator().
 createObjectAdapterWithEndpoints("Lab3", "default -p 10000");

 // Create the root directory (with name "/" and no parent).
 //
 DirectoryI root = new DirectoryI("/", null);
 root.activate(adapter);

 // Create a file called "README" in the root directory.
 //
 File file = new FileI("README", root);
 String[] text = new String[]
 { "This file system contains a collection of poetry." };

Assignment 3: Creating an Ice Server The server Class

Copyright © 2005-2010 ZeroC, Inc. 7.7

 try
 {
 file.write(text);
 }
 catch(IOError e)
 {
 // Implementation won't throw.
 }
 file.activate(adapter);

 // Create a directory called "Coleridge" in the root directory.
 //
 DirectoryI coleridge = new DirectoryI("Coleridge", root);
 coleridge.activate(adapter);

 // Create a file called "Kubla_Khan" in the Coleridge directory.
 //
 file = new FileI("Kubla_Khan", coleridge);
 text = new String[]{ "In Xanadu did Kubla Khan",
 "A stately pleasure-dome decree:",
 "Where Alph, the sacred river, ran",
 "Through caverns measureless to man",
 "Down to a sunless sea." };
 try
 {
 file.write(text);
 }
 catch(IOError e)
 {
 // Implementation won't throw.
 }
 file.activate(adapter);

 // All objects are created, allow client requests now.
 //
 adapter.activate();

 // Wait until we are done.
 //
 communicator().waitForShutdown();;
 if(interrupted())
 {
 System.out.println(appName() + ": received signal, shutting down");
 }

 return 0;
 }

 public static void
 main(String[] args)
 {
 Server app = new Server();
 int status = app.main("Server", args);
 System.exit(status);
 }
}

Assignment 3: Creating an Ice Server The Directory Class

Copyright © 2005-2010 ZeroC, Inc. 7.8

7-5 The Directory Class

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc.

7-5

The Directory Class

Notes:

package Filesystem;

public final class DirectoryI extends _DirectoryDisp implements NodeI
{
 public
 DirectoryI(String name, DirectoryI parent)
 {
 _name = name;
 _parent = parent;
 _myID = parent != null ? java.util.UUID.randomUUID().toString() :
 "RootDir";
 }

 public String
 id()
 {
 return _myID;
 }

 public void
 activate(Ice.ObjectAdapter adapter)
 {

Assignment 3: Creating an Ice Server The Directory Class

Copyright © 2005-2010 ZeroC, Inc. 7.9

 Ice.Identity id = new Ice.Identity();
 id.name = _myID;
 adapter.add(this, id);
 if(_parent != null)
 {
 _parent.addChild(_name, this);
 }
 }

 public String
 name(Ice.Current c)
 {
 return _name;
 }

 public NodeDetails[]
 list(Ice.Current c)
 {
 NodeDetails[] s = new NodeDetails[_contents.size()];
 int i = 0;
 for(java.util.Map.Entry<Ice.Identity, NodeI> e :
 _contents.entrySet())
 {
 NodeI val = e.getValue();
 Ice.Identity id = new Ice.Identity();
 id.name = val.id();
 s[i] = new NodeDetails();
 s[i].type = val instanceof DirectoryI
 ? NodeType.DirT : NodeType.FileT;
 s[i].proxy = NodePrxHelper.uncheckedCast(
 c.adapter.createProxy(id));
 s[i].name = s[i].proxy.name();
 ++i;
 }
 return s;
 }

 public void
 addChild(String name, NodeI child)
 {
 _contents.put(name, child);
 }

 private String _name;
 private DirectoryI _parent;
 private String _myID;
 private java.util.HashMap<String, NodeI> _contents =
 new java.util.HashMap<String, NodeI>();
}

Assignment 3: Creating an Ice Server The FileI Class

Copyright © 2005-2010 ZeroC, Inc. 7.10

7-6 The FileI Class

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc.

7-6

The FileI Class

Notes:

package Filesystem;

public class FileI extends _FileDisp implements NodeI
{
 public
 FileI(String name, DirectoryI parent)
 {
 _name = name;
 _parent = parent;
 _myID = java.util.UUID.randomUUID().toString();
 }

 public String
 id()
 {
 return _myID;
 }

 public void
 activate(Ice.ObjectAdapter adapter)
 {
 Ice.Identity id = new Ice.Identity();

Assignment 3: Creating an Ice Server The FileI Class

Copyright © 2005-2010 ZeroC, Inc. 7.11

 id.name = _myID;
 adapter.add(this, id);
 if(_parent != null)
 {
 _parent.addChild(_name, this);
 }
 }

 public String
 name(Ice.Current c)
 {
 return _name;

 }

 public String[]
 read(Ice.Current c)
 throws IOError
 {
 return _lines;
 }

 public void
 write(String[] text, Ice.Current c)
 throws IOError
 {
 _lines = text;
 }

 private String _name;
 private DirectoryI _parent;
 private String _myID;
 private String[] _lines;
}

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

8

th Java

5-2010 Zero

8 P

oC, Inc.

Pro
Co

per
onfi

rtie
igu

es a
rat

and
tion

d
n

Properties and Configuration Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 8.2

8 Properties and Configuration

8-1 Lesson Overview

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-1

Lesson Overview
• This lesson presents:

– how to use properties to control various aspects of the
Ice run time.

– how to use properties in your own applications.

• By completion of the chapter, you will know how the Ice
run time can be configured using properties, how property
values are evaluated, and how to use the property
mechanism to configure your own applications.

Notes:

Ice uses a simple configuration mechanism that allows you to control various aspects of
the Ice run time. You can also use the same mechanism to configure your own
applications.

8-1-1 Lesson Objectives
By completion of the chapter, you will know how the Ice run time can be configured
using properties, how property values are evaluated, and how to use the property
mechanism to configure your own applications.

Properties and Configuration Ice Properties

Copyright © 2005-2010 ZeroC, Inc. 8.3

8-2 Ice Properties

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-2

Ice Properties
The Ice run time and its various subsystems are configured using properties.

• Properties are name–value pairs, e.g.:
Ice.UDP.SndSize=65535

• By convention, Ice property names use the syntax
<application>.<category>[.<sub-category>]

For your own properties, you can use any number of categories and
sub-categories (including none).

• Some property prefixes are reserved for Ice:
Ice, IceBox, IceGrid, IcePatch2, IceSSL, IceStorm, Freeze,
and Glacier2.

• Property names are sequences of characters, excluding space (‘ ’),
hash (‘#’), and (‘=’).

• Property values are sequences of characters, excluding hash (‘#’).

Notes:

Ice uses properties for its configuration. Properties are name–value pairs that are read by
the Ice run time to configure various aspects of the run time, such as the maximum request
size.

The property mechanism is extensible, so you can use it to configure your own
applications.

By convention, Ice uses a period (‘.’) to separate property names into categories. This is a
convention only—syntactically, the period has no special significance. For your own
applications you can choose to follow the same convention and use categories for property
names, or you can simply use a flat namespace for properties.

Properties and Configuration Configuration Files

Copyright © 2005-2010 ZeroC, Inc. 8.4

8-3 Configuration Files

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-3

Configuration Files
Properties are often set in a configuration file.

• Configuration files contain one property setting per line, e.g.:
Example config file

Ice.MessageSizeMax = 2048 # 2MB message size limit

Ice.Trace.Network=3 # Trace all network activity

Ice.Trace.Protocol= # No protocol tracing

• Leading and trailing white space around a property value are
ignored, as are empty lines. Backslashes must be escaped as \\.

• The # character introduces a comment to the end of the current line.

• If a property is set more than once, the last setting takes effect.

• Assigning nothing to a property unsets the property.

• You can set the ICE_CONFIG environment variable to the path of a
configuration file. The file is read when you create a communicator.

• Configuration files use UTF-8 encoding.

Notes:

You can define properties in a configuration file, using the syntax shown above. Note that
leading and trailing white space for property values is ignored. (White space in the middle
of a property value is preserved, however.)

If you set the ICE_CONFIG environment variable to the path of a configuration file, the
file is read when you create a communicator. As a rule, you should use an absolute path
name, otherwise the configuration file will not be found if the current working directory
of an Ice process changes.

Note that you can create property names and values that contain spaces, #, or = characters.
(See the Ice Manual for details on how to escape these characters.)

Properties and Configuration Setting Ice Properties on the Command Line

Copyright © 2005-2010 ZeroC, Inc. 8.5

8-4 Setting Ice Properties on the Command Line

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-4

Setting Ice Properties on the Command Line
You can set Ice properties on the command line, e.g.:

java Server --Ice.UDP.SndSize=65535 --Ice.Trace.Network

• --Ice.Trace.Network is the same as

--Ice.Trace.Network=1

• --Ice.Trace.Network= is the same as

--Ice.Trace.Network=’’

• The --Ice.Config property determines the path of a configuration file:
--Ice.Config=/opt/Ice/default.config

• --Ice.Config overrides the setting of the ICE_CONFIG environment
variable.

• If you set properties on the command line, and the same properties are
set in a configuration file, the properties on the command line override
the ones in the configuration file.

Notes:

Apart from using a configuration file, you can also set Ice properties on the command line
as shown.

If you simply mention the name of a property (that is, not follow the property name with
an = character), the property is set to the value 1.

If you assign nothing to a property, the property is cleared.

The --Ice.Config property specifies the value of a configuration file. It overrides the
setting of the ICE_CONFIG environment variable.

If you set properties in a configuration file and the same properties on the command line,
the values on the command line take precedence.

If you specify several --Ice.Config options on the command line, only the last setting
is used and the others are ignored.

If you want to use several configuration files, you can use the syntax
java Server --Ice.Config=/opt/Ice/default.config,/home/joe/Ice/default.config

(Note the comma separating the two configuration file names.) In this case, the run time
reads the two configuration files in the order specified, so settings in the second file
override settings in the first file. (You can use the same syntax for the ICE_CONFIG
environment variable.)

Properties and Configuration Ice Initialization

Copyright © 2005-2010 ZeroC, Inc. 8.6

8-5 Ice Initialization

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-5

Ice Initialization
Ice.Util.initialize accepts an argument holder:
Communicator initialize(StringSeqHolder args);

The function scans the argument vector for any Ice-specific options and
returns an argument vector with those options removed.

Example:
java Server --Ice.Config=cfg --Ice.Trace.Network=3 -o f

After calling Ice.Util.initialize, the cleaned-up vector contains:
-o f

You should parse the command line for your application after calling
Ice.Util.initialize. That way, you do not need to write code to skip
Ice-related command-line options.

If you want the program name to appear in trace and log messages, set

Ice.ProgramName before initializing the communicator.

Notes:

Ice.Util.initialize is overloaded: one version accepts a string array, whereas the
other version accepts a StringSeqHolder. The latter version removes any Ice-specific
options from the argument vector. By calling Ice.Util.initialize before parsing the
command line, you avoid the need to write code to skip over Ice-specific command-line
options.

Note that, if you want the name of the program to appear in trace and log messages, you
must set Ice.ProgramName before initializing the communicator.

Properties and Configuration Reading Properties Programmatically

Copyright © 2005-2010 ZeroC, Inc. 8.7

8-6 Reading Properties Programmatically

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-6

Reading Properties Programatically
You can access property values programmatically:
dictionary<string, string> PropertyDict;

local interface Properties {

string getProperty(string key);

string getPropertyWithDefault(string key,

string value);

int getPropertyAsInt(string key);

int getPropertyAsIntWithDefault(string key,

int value);

PropertyDict getPropertiesForPrefix(string prefix);

// ...

};

local interface Communicator {

Properties getProperties();

// ...

};

Notes:

The communicator provides a getProperties operation that returns a smart pointer to a
local Properties object. You can use this interface to read the value of properties
(including properties for your own application). The operations behave as follows:
• getProperty

This operation returns the value of the specified property. If the property is not set, the
operation returns the empty string.

• getPropertyWithDefault

This operation returns the value of the specified property. If the property is not set, the
operation returns the supplied default value.

• getPropertyAsInt

This operation returns the value of the specified property as an integer. If the property
is not set or contains a string that does not parse as an integer, the operation returns
zero.

• getPropertyAsIntWithDefault

This operation returns the value of the specified property as an integer. If the property
is not set or contains a string that does not parse as an integer, the operation returns
the supplied default value.

Properties and Configuration Reading Properties Programmatically

Copyright © 2005-2010 ZeroC, Inc. 8.8

• getPropertiesForPrefix(string prefix)

This operation returns all properties that begin with a specified prefix, such as
“Filesystem”.

Note that the Properties interface contains a number of other operations for more
advanced uses. (See the Ice manual for details.)

Here is how you could retrieve an application-specific property,
Filesystem.MaxFileSize programmatically:
public static void

main(String[] args)

{

 Ice.StringSeqHolder ah = new Ice.StringSeqHolder(args);

 Ice.Communicator ic = Ice.Util.initialize(ah);

 args = ah.value;

 // Parse command line for application-specific options...

 Ice.Properties props = ic.getProperties();

 int ms = props.getPropertyAsInt("Filesystem.MaxFileSize");

 // ...

}

Note that, for an application-specific property to be retrieved with this code, it must be set
in a configuration file. If the property is set on the command line instead, you need to
explicitly parse the command line for application-specific properties first, as shown in
Section 8-8.

Properties and Configuration Using InitializationData

Copyright © 2005-2010 ZeroC, Inc. 8.9

8-7 Using InitializationData

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-7

Using InitializationData
Ice.Util.initialize is overloaded:
static Communicator initialize();

static Communicator initialize(String[] args);

static Communicator initialize(StringSeqHolder ah);

static Communicator initialize(InitializationData id);

static Communicator initialize(String[] args, InitializationData id);

static Communicator initialize(StringSeqHolder ah, InitializationData id);

final class InitializationData implements Cloneable

{

public InitializationData();

public java.lang.Object clone();
public Properties properties;
public Logger logger;
public Stats stats;
public ThreadNotification threadHook;
public ClassLoader classLoader;
public Dispatcher dispatcher;

}

Notes:

Ice.Util.initialize is overloaded to optionally accept an InitializationData
instance. The fields of this structure allow you to customize a communicator, for example,
with a specific logger or specific property values (by setting the properties member).
You are required to do this when you create a communicator because, once set, the
customizable aspects of the communicator remain in effect for the entire life time of the
communicator, that is, they are immutable and cannot be changed once you have created a
communicator.

You can pass application-specific properties to a communicator by setting the
properties member of the InitializationData instance.

Properties and Configuration Command-Line Application Properties

Copyright © 2005-2010 ZeroC, Inc. 8.10

8-8 Command-Line Application Properties

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-8

Command-Line Application Properties
To be able to set application-specific properties on the command line,
you must initialize a property set before you initialize the communicator:
public static void main(String[] args)
{

Ice.InitializationData initData = new Ice.InitializationData();

initData.properties = Ice.Util.createProperties();

args = initData.properties.parseCommandLineOptions(

"Filesystem", args);

// Parse other application-specific options here...

Ice.Communicator communicator =
Ice.Util.initialize(args, initData);

}

• createProperties creates an empty property set.

• parseCommandLineOptions converts properties with the specified prefix,
strips them from args, and returns the remaining arguments.

Notes:

If you use a property such as Filesystem.MaxFileSize and set the property value in a
configuration file, the property will be set automatically when the configuration file is
parsed.

However, if you want to be able to set the property on the command line, you must take
extra steps:

1. Call Ice.Util.createProperties to create an empty property set.

2. Call parseCommandLineOptions on the property set, specifying the prefix of the
property (or properties) you are interested in.

parseCommandLineOptions looks for option with the specified prefix. For
example,
parseCommandLineOptions("Filesystem", args)

looks for command-line options beginning with --Filesystem and treats them as
property settings. The values of these properties are added to the property set, and the
returned string sequence contains any command-line options that were not converted
to properties. You can call parseCommandLineOptions repeatedly to add
properties with different prefixes.

Properties and Configuration Command-Line Application Properties

Copyright © 2005-2010 ZeroC, Inc. 8.11

Note that passing an empty prefix to parseCommandLineOptions causes it to parse
every option with two leading dash (--) characters.

3. Pass an InitializationData instance with the initialized properties to
Ice.Util.initialize to set the properties for the communicator.

Properties and Configuration Commonly-Used Ice Properties

Copyright © 2005-2010 ZeroC, Inc. 8.12

8-9 Commonly-Used Ice Properties

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-9

Commonly-Used Ice Properties
• Ice.Trace.Network (0-3)

Trace network activity.

• Ice.Trace.Protocol (0 or 1)

Trace protocol messages.

• Ice.Warn.Dispatch

Print warnings for unexpected server-side exceptions.

• Ice.Warn.Connections (0 or 1)

Print warnings if connections are lost unexpectedly.

• Ice.MessageSizeMax (value in kB)

Set maximum size of messages that can be sent and received.

• Ice.ThreadPool.Server.Size

Set the number of threads in the server-side thread pool.

See the Ice manual for a complete list of properties.

Notes:

Above lists a few of the more commonly-used properties. Note that the trace and warning
properties are particularly useful for debugging and should be the first thing you try if you
find that a client cannot communicate with a server as expected.

Properties and Configuration Converting Properties to Proxies

Copyright © 2005-2010 ZeroC, Inc. 8.13

8-10 Converting Properties to Proxies

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-10

Converting Properties to Proxies
A convenience operation on the communicator allows you to convert a
property value to a proxy.
ObjectPrx p = comunicator.propertyToProxy("App.Proxy");

This reads the stringified proxy from the property App.Proxy.

App.Proxy is the base name of the property. You can define additional
aspects of the proxy in separate subordinate properties. For example:
• App.Proxy.CollocationOptimized

• App.Proxy.ConnectionCached

• App.Proxy.EndpointSelection

The subordinate properties of the property group define the local
behavior of the proxy, such as how to select endpoints, prefer secure
transports over non-secure ones, and so on.

Notes:

The propertyToProxy convenience operation on the communicator allows you to
specify the name of a property from which to read a stringified proxy and to convert that
string into a proxy.

This makes it easy to place stringified proxies into configuration files and convert them
back to proxies without having to first read the property and then call stringToProxy.

Note that you can use subordinate properties to specify additional local behavior for a
proxy, such as how the proxy selects its endpoints. (See the Ice manual for more details
on the available options.)

Properties and Configuration Object Adapter Properties

Copyright © 2005-2010 ZeroC, Inc. 8.14

8-11 Object Adapter Properties

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8-11

Object Adapter Properties
Object adapters support a number of configuration properties.

The adapter’s name is used as the prefix for its properties:
ObjectAdapter adapter =

communicator.createObjectAdapter("MyAdapter");

Commonly-used adapter properties:
• MyAdapter.AdapterId

• MyAdapter.Endpoints

• MyAdapter.ProxyOptions

• MyAdapter.PublishedEndpoints

• MyAdapter.Router

• MyAdapter.ThreadPool

Properties must be defined in the communicator’s property set prior to
calling createObjectAdapter.

Notes:

Object adapters support a number of configuration properties that allow you to customize
their behavior. The name that you assign to an object adapter when calling
createObjectAdapter is used as the prefix for these configuration properties. The
most common adapter property is <adapter>.Endpoints, which specifies the
address(es) on which the adapter listens for incoming connections. Please refer to the Ice
manual for more information on configuring an object adapter.

Note that it is not strictly necessary to define your adapter’s properties prior to initializing
a communicator. However, the properties must be defined prior to calling
createObjectAdapter and, once the adapter is created, subsequent changes to its
properties have no effect.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

U

th Java

5-2010 Zero

9
Usi

oC, Inc.

As
ing

sig
g Pr

gnm
rop

men
pert

nt 4
ties

4
s

Assignment 4: Using Properties Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 9.2

9 Assignment 4: Using Properties

9-1 Exercise Overview

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc.

9-1

Exercise Overview
In this exercise, you will:

• modify the client we created in Assignment 2 to use
application-specific properties.

By the end of this exercise, you will have gained experience
in how to use properties to configure the Ice run time as well
as your own applications.

Notes:

In this exercise, you will modify the client we created in Assignment 2 to use application-
specific properties.

9-1-1 Exercise Objectives
By the end of this exercise, you will have gained experience in how to use properties to
configure the Ice run time as well as your own applications.

Assignment 4: Using Properties Adding an Application-Specific Property

Copyright © 2005-2010 ZeroC, Inc. 9.3

9-2 Adding an Application-Specific Property

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc.

9-2

Adding an Application-Specific Property

• In your lab4 directory, you will find a build.xml file to
build a client and a server.

• Both client and server are complete.

• You will modify the client to use application-specific
properties.

Notes:

In your lab4 directory, you will find a build.xml file to build a client and a server.
Both client and server are complete. You will modify the client to use application-specific
properties.

Assignment 4: Using Properties What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 9.4

9-3 What You Need to Do

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc.

9-3

What You Need to Do
1. Modify the client such that it picks up its property settings

from a configuration file. Add the missing initialization of base
to denote the proxy to the root directory.

2. Modify the run method such that it retrieves the property
setting and sets the _showSize member variable accordingly.

3. Create a configuration file config and add a setting for both
properties to it.

4. Modify main such that you can invoke the client.
5. Change the proxy for the root directory to port 9999 and run

the client.
6. Change the proxy for the root directory to use port 10000

again. Now run the client with --Ice.Trace.Protocol=1.

Notes:

The Slice definitions in Filesystem.ice for this exercise have been modified by
adding a size operation to the Node interface. For a file, this operation returns the
number of characters in the file; for a directory, it returns the number of entries in the
directory.

You will modify the client code to react to the setting of two new properties,
Filesystem.RootDir and Filesystem.ShowSize.

 Filesystem.RootDir contains the stringified proxy for the root directory.
The server listens for incoming requests on port 10000, and the root directory has
the object identity RootDir.

 The Filesystem.ShowSize property controls the behavior of
listRecursive. If that property is set to zero, the behavior of
listRecursive is unchanged. If the property is set to 1, listRecursive
will, for each file and directory, also display its size.

The implementation of listRecursive uses the setting of member variable
_showSize to determine whether or not to show the size information.
(listRecursive already contains this change, so you do not need to modify
the function.)

Assignment 4: Using Properties What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 9.5

1. Initially, you will modify the client such that it picks up its property settings from a
configuration file. Add the missing initialization of base to denote the proxy to the
root directory.

2. Modify the run method such that it retrieves the property setting and sets the
_showSize member variable accordingly.

3. Create a configuration file config and add a setting for both properties to it. Run the
client and verify that it does not show the size information if the property is set to
zero, and that it does show the size information if the property is set to one. What
options do you have for getting the client to load the configuration file?

4. As is, the client code cannot handle setting the filesystem properties on the command
line. Modify main such that you can invoke the client as:
java Client --Filesystem.ShowSize=1 \

 --Filesystem.RootDir="RootDir:default -p 10000"

and have it react to the property settings.

5. Change the proxy for the root directory to port 9999 and run the client. You will see a
message about a refused connection.

Stop the server and restart it with --Ice.Trace.Network=2. Now run the client
again, also with --Ice.Trace.Network=2. On which run did you find it easier
to work out what is going wrong?

6. Change the proxy for the root directory to use port 10000 again. Now run the client
with --Ice.Trace.Protocol=1. Read the trace messages that are produced.
Can you find any messages being exchanged that you did not expect? What part of the
client is responsible for the exchange of these messages?

Assignment 4: Using Properties Using Properties

Copyright © 2005-2010 ZeroC, Inc. 9.6

9-4 Using Properties

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc.

9-4

Using Properties
The missing line of code to initialize the _showSize member is:
_showSize = communicator().getProperties().

getPropertyAsInt("Filesystem.ShowSize") != 0;

The code to add at the beginning of main so the properties can be set on the
command line is:
Ice.InitializationData initData = new Ice.InitializationData();

initData.properties = Ice.Util.createProperties();

args = initData.properties.parseCommandLineOptions("Filesystem",
args);

Notes:

The missing line to initialize the proxy to the root directory is:
Ice.ObjectPrx base =
 communicator().propertyToProxy("Filesystem.RootDir");

The missing line of code to initialize the _showSize member is:
_showSize = communicator().getProperties().

 getPropertyAsInt("Filesystem.ShowSize") != 0;

The code to add at the beginning of main so the properties can be set on the command
line is:
Ice.InitializationData initData = new Ice.InitializationData();
initData.properties = Ice.Util.createProperties();
args = initData.properties.parseCommandLineOptions("Filesystem", args);

When running the client with --Ice.Trace.Protocol=1, you will find ice_isA
messages being sent by the client. These are caused by the calls to checkedCast in the
client code: during a safe down-cast, the Ice run time sends a message to the server to
confirm whether the object denoted by the proxy supports the requested interface.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

th Java

5-2010 ZerooC, Inc.

Th
1

hrea
10
ade

Mu
ed

ulti-
Ice

-
e

Multi-Threaded Ice Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 10.2

10 Multi-Threaded Ice

10-1 Lesson Overview

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc.

10-1

Lesson Overview
• This lesson presents:

– the threading models available with the Ice run time and
how to configure them.

– some general threading strategies that you can use in your
servers

• By the completion of the chapter, you will understand how
the Ice run time uses threads and how to implement a
simple thread-safe server.

Notes:

This chapter presents the threading models available with the Ice run time and how to
configure them. This chapter also presents some general threading strategies that you can
use in your servers.

10-1-1 Lesson Objectives
By the completion of the chapter, you will understand how the Ice run time uses threads
and how to implement a simple thread-safe server.

Multi-Threaded Ice Ice Threading Model

Copyright © 2005-2010 ZeroC, Inc. 10.3

10-2 Ice Threading Model

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc.

10-2

Ice Threading Model
Ice uses a thread pool concurrency model.

For each communicator, Ice maintains:

• a client-side thread pool to process replies for outgoing
requests and to dispatch incoming requests on bi-
directional connections.

• a server-side thread pool to dispatch incoming
requests.

You can create additional per-adapter thread pools.

The default size for both client- and server-side thread
pools is 1.

Notes:

Ice uses a thread pool concurrency model.

• The run time creates one client-side thread pool per communicator (by default, with a
single thread). The client-side thread pool is used to dispatch incoming requests on
bidirectional connections, so clients can receive callbacks. The client-side thread pool
is also used to handle replies for outgoing invocations.

• The run time creates one server-side thread pool per communicator (by default, with
a single thread) to dispatch incoming requests.

The default thread pools are shared by all object adapters created by the communicator.
You can also configure a per-adapter thread pool that is used to dispatch requests to the
corresponding object adapter.

Multi-Threaded Ice Thread Pool Configuration

Copyright © 2005-2010 ZeroC, Inc. 10.4

10-3 Thread Pool Configuration

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc.

10-3

Thread Pool Configuration
By default, the client- and server-side thread pools contain a single
thread.

You can configure the pool size:
• Ice.ThreadPool.Client.Size=<num>

The client-side thread pool can normally be left at 1, unless you need
to support concurrent asynchronous or bi-directional callbacks (or if
these callbacks might block).

• Ice.ThreadPool.Server.Size=<num>

The server-side thread pool determines how many requests can be
processed concurrently by the server.

Both properties set the initial number of threads in the pool.

Notes:

You can control the initial sizes of the client- and server-side thread pools with the
properties Ice.ThreadPool.Client.Size and Ice.ThreadPool.Server.Size.
The thread pools are created when you create a communicator and destroyed when you
destroy a communicator, although the number of threads in a pool can change over time
as directed by the pool’s configuration.

Note that, unless you need asynchronous or bi-directional callbacks to run concurrently,
you can leave the client-side thread pool size at 1.

Multi-Threaded Ice Thread Pool Configuration (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 10.5

10-4 Thread Pool Configuration (cont. 1)

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc.

10-4

Thread Pool Configuration (1)
Thread pools initially contains the number of threads specified by

Ice.ThreadPool.Client.Size and

Ice.ThreadPool.Server.Size.

You can also set a maximum size:
• Ice.ThreadPool.Client.SizeMax=<num>

• Ice.ThreadPool.Server.SizeMax=<num>

These properties allow a thread pool to temporarily grow larger than its
initial size due to increased demand.

During idle periods, the size of a pool can shrink to just one thread. The
idle timeout is specified by

Ice.ThreadPool.Client.ThreadIdleTime and

Ice.ThreadPool.Server.ThreadIdleTime.

Notes:

The Ice.ThreadPool.Client.SizeMax and Ice.ThreadPool.Server.SizeMax
properties permit a thread pool to grow larger than its initial size due to increased
demand. The run time grows a thread pool immediately as the load increases up to the
pool’s maximum size, then reaps threads after they have been idle for a configurable
period (the default is 60 seconds). The Ice.ThreadPool.Client.ThreadIdleTime
and Ice.ThreadPool.Server.ThreadIdleTime properties determine how quickly
idle threads are reaped. During idle periods, the size of a pool can shrink to just one
thread.

Multi-Threaded Ice Thread Pool Configuration (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 10.6

10-5 Thread Pool Configuration (cont. 2)

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc.

10-5

Thread Pool Configuration (2)
• Ice.ThreadPool.Client.SizeWarn=<num>

Ice.ThreadPool.Server.SizeWarn=<num>

These properties log a warning once the number of threads in a
pool exceeds the specified threshold.

• Ice.ThreadPool.Client.StackSize=<bytes>

Ice.ThreadPool.Server.StackSize=<bytes>

These properties set the stack size of the threads in a pool (byte
units).

The default value is zero, which gives threads the default stack size
as determined by the OS.

Notes:

You can set Ice.ThreadPool.Client.SizeWarn and
Ice.ThreadPool.Server.SizeWarn to log a warning once the number of threads in a
pool exceeds the specified threshold. The warning is written using whatever logger is set
on the corresponding communicator.

You can set Ice.ThreadPool.Client.StackSize and
Ice.ThreadPool.Server.StackSize to change the stack size for threads in a pool to
a value other than the OS-assigned default. This is useful for large thread pools because
the default size (usually 64MB) can cause the process to exceed its virtual memory
allocation.

Multi-Threaded Ice Thread Safety

Copyright © 2005-2010 ZeroC, Inc. 10.7

10-6 Thread Safety

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc.

10-6

Thread Safety
All APIs in the Ice run time are thread safe:

• You never have to lock something against concurrent access on
behalf of the run time.

• Ice run-time APIs are deadlock free, so you can call any Ice API at
any time and from any thread without fear of deadlock.

Exception:

Do not call waitForShutdown, waitForDeactivate, or
waitForHold from within an executing operation on the
corresponding adapter. If you do, you will deadlock.

Access to collections (sequences and dictionaries) is not interlocked. If
you manipulate the same collection concurrently from different threads,
you must establish a critical region yourself.

For multi-threaded servers, you must protect your own application-
specific data against concurrent access.

Notes:

In general, the Ice run time is completely thread-safe, that is, you never need to lock
anything on behalf of the run time. Similarly, the run time is free of deadlocks, except for
nonsensical situations, such as calling waitForShutdown from within an operation
implementation on the corresponding object adapter.

Sequence and dictionary accesses are not interlocked because they are mapped to
language-specific collections that do not use concurrency control (such as Java arrays or
hash maps). If you concurrently manipulate the same collection from different threads,
you must interlock yourself as appropriate.

Of course, you must establish critical regions around accesses to your own application-
specific data, as you would for any multi-threaded program.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

th Java

5-2010 Zero

11
T

oC, Inc.

As
Thr

sig
rea

gnm
ad S

men
Saf

nt 5
fety

5
y

Assignment 5: Thread Safety Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 11.2

11 Assignment 5: Thread Safety

11-1 Exercise Overview

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc.

11-1

Exercise Overview
In this exercise, you will:

• modify the server we created in Assignment 3 to be
thread-safe.

By the completion of this exercise, you will have gained
experience in how to use synchronization to make a server
implementation thread-safe, and will know how to create
threads to make concurrent invocations.

Notes:

In this exercise, you will modify the server we created in Assignment 3 to be thread-safe.

11-1-1 Exercise Objectives
By the completion of this exercise, you will have gained experience in how to use
synchronization to make a server implementation thread-safe, and will know how to
create threads to make concurrent invocations.

Assignment 5: Thread Safety Thread Safety

Copyright © 2005-2010 ZeroC, Inc. 11.3

11-2 Thread Safety

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc.

11-2

Thread Safety
• The file system server is not thread-safe.

• Modify the server to support concurrent invocations by
clients and modify the client to make concurrent
invocations on the server.

Notes:

As it stands, the file system server is not thread-safe. In this step, you will modify the
server to support concurrent invocations by clients and modify the client to make
concurrent invocations on the server.

Assignment 5: Thread Safety What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 11.4

11-3 What You Need to Do

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc.

11-3

What You Need to Do
1. Modify the server to provide mutual exclusion.
2. Add trace statements to the beginning and end of list: your code

should print the calling thread’s ID as it enters and leaves list.
3. For testing purposes, add a statement to list that causes the

calling thread to sleep for one second.
4. Modify the client to create three threads, each of which will call

listRecursive.
5. At the end of Client.run, add code to create three threads of

type ListThread.
6. Add code to join with the three threads you created in step 5.
7. Run client and server in separate windows and examine the trace

produced by each program.

Notes:

1. Modify the server to provide mutual exclusion. Use per-servant locking: clients can
concurrently execute operations on different nodes in the file system, but concurrent
invocations on the same node are serialized.

2. Add a trace statement to the beginning and end of list: your code should print the
calling thread’s ID as it enters and leaves list. Be sure to add the trace before
acquiring any lock so, instead of making the entire method synchronized, use a
synchronized block inside the method.

3. For testing purposes, add a statement to list that causes the calling thread to sleep
for one second. Insert this statement after acquiring the lock. (We need to artificially
slow down the execution so we can check by looking at the trace statement that
concurrency works as expected.)

4. In this step, you will modify the client to create three threads, each of which will call
listRecursive. Examine Client.java. You will notice that the structure of
the client has changed somewhat:

 The client contains a new class, ListThread. This class is the thread class
whose run method becomes the start frame of the threads created by the client.

 The listRecursive method has moved from the Client class to the
ListThread class.

Assignment 5: Thread Safety What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 11.5

Implement the run method of ListThread.

5. At the end of Client.run, add code to create three threads of type ListThread.
Add a trace statement that prints the ID of each thread.

6. Add code to join with the three threads you created in step 5. Add trace statements to
show the ID of each thread when you call join, and to show the ID again when
join completes.

7. Run client and server in separate windows and examine the trace produced by each
program. Check whether invocations of list in the server are indeed dispatched
concurrently. (Use the thread IDs to determine whether more than one thread calls
list while another thread is still sleeping inside list.) If you find that only one
thread enters list at a time, fix your server such that it provides true concurrency.

Assignment 5: Thread Safety Server Modifications

Copyright © 2005-2010 ZeroC, Inc. 11.6

11-4 Server Modifications

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc.

11-4

Server Modifications
• To make the server thread-safe, we need to make Slice

operations synchronized.

• The operations for which this is necessary are read, write
and list.

• It is also necessary to acquire a lock in addChild: without
this lock, if the server concurrently instantiates nodes from
different threads, the _contents member of the parent can
be corrupted.

Notes:

To make the server thread-safe, we need to make Slice operations synchronized. The
operations for which this is necessary are read, write, and list. The name operation
need not be synchronized because it returns an immutable value. (Strictly speaking, we
could leave synchronization off the list operation because the _contents member is
not modified after the server initializes the servants. However, if the server adds servants
while it is running, the synchronization is necessary.) In addition, it is necessary to acquire
a lock in addChild: without this lock, if the server concurrently instantiates nodes from
different threads, the _contents member of the parent can be corrupted.

The DirectoryI implementation changes as follows.
public final class DirectoryI ...
{
 public
 DirectoryI(String name, DirectoryI parent)
 {
 // ...
 }

 public String
 id()
 {
 return _myID;

Assignment 5: Thread Safety Server Modifications

Copyright © 2005-2010 ZeroC, Inc. 11.7

 }

 public void
 activate(Ice.ObjectAdapter adapter)
 {
 // ...
 }

 public String
 name(Ice.Current c)
 {
 return _name;
 }

 public NodeDetails[]
 list(Ice.Current c)
 {
 Thread t = Thread.currentThread();

 System.out.println(t.getName() + " entering list");

 NodeDetails[] s;
 synchronized(this)
 {
 while(true)
 {
 try
 {
 t.sleep(1000);
 break;
 }
 catch(InterruptedException ex)
 {
 // Ignored
 }
 }

 s = new NodeDetails[_contents.size()];
 int i = 0;
 for(java.util.Map.Entry<Ice.Identity, Node> e :
 _contents.entrySet())
 {
 Node val = e.getValue();
 Ice.Identity id = new Ice.Identity();
 id.name = val.id();
 s[i] = new NodeDetails();
 s[i].type = val instanceof DirectoryI ?
 NodeType.DirT : NodeType.FileT;
 s[i].proxy = NodePrxHelper.uncheckedCast(
 _adapter.createProxy(id));
 s[i].name = s[i].proxy.name();
 ++i;
 }
 }

 System.out.println(t.getName() + " leaving list");

 return s;
 }

 public synchronized void
 addChild(Ice.Identity id, Object child)
 {

Assignment 5: Thread Safety Server Modifications

Copyright © 2005-2010 ZeroC, Inc. 11.8

 _contents.put(id, child);
 }

 // ...
}

Assignment 5: Thread Safety Server Modifications

Copyright © 2005-2010 ZeroC, Inc. 11.9

Note that, normally, list would be a synchronized method. We use a synchronized
block instead only so we can verify via the trace statements that the server indeed
dispatches concurrent operation invocations in separate threads.

The FileI implementation changes as follows:
public class FileI ...
{
 public
 FileI(String name, DirectoryI parent)
 {
 // ...
 }

 public String
 id()
 {
 return _myID;
 }

 public void
 activate(Ice.ObjectAdapter adapter)
 {
 // ...
 }

 public synchronized String
 name(Ice.Current c)
 {
 return _name;
 }

 public synchronized String[]
 read(Ice.Current c)
 throws IOError
 {
 return _lines;
 }

 public synchronized void
 write(String[] text, Ice.Current c)
 throws IOError
 {
 _lines = text;
 }

 // ...
}

Note: For the server to actually run multi-threaded, you need to increase the thread pool
size because the default size is 1. One way to do this is to run the server with
--Ice.ThreadPool.Server.Size=5.

Assignment 5: Thread Safety Client Modifications

Copyright © 2005-2010 ZeroC, Inc. 11.10

11-5 Client Modifications

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc.

11-5

Client Modifications
• The client simply creates three threads that each call

listRecursive and joins with these threads.

Notes:

The client simply creates three threads that each call listRecursive and joins with
these threads:
public class Client extends Ice.Application
{
 public int run(String[] args)
 {
 // ...

 Thread[] threads = new Thread[3];
 for(int i = 0; i < threads.length; ++i)
 {
 threads[i] = new ListThread(rootDir, "thread " + i);
 threads[i].start();
 System.out.println("Started " + threads[i].getName());
 }

 for(int i = 0; i < threads.length; ++i)
 {
 System.out.println("Joining with " + threads[i].getName());
 while(true)
 {
 try
 {

Assignment 5: Thread Safety Client Modifications

Copyright © 2005-2010 ZeroC, Inc. 11.11

 threads[i].join();
 break;
 }
 catch(InterruptedException ex)
 {
 // Ignored
 }
 }
 System.out.println("Joined with " + threads[i].getName());
 }
 return 0;

 }

 // ...
}

Ice Pro
Studen

Copyr

1

ogramming wit
nt Workbook

ight © 2005-20

2 O

th Java

010 ZeroC, Inc.

Obj

.

jectt Liife Cyyclee

Object Life Cycle Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 12.2

12 Object Life Cycle

12-1 Lesson Overview

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-1

Lesson Overview
• Object life cycle refers to the issues that surround

creation and destruction of objects.

• This lesson shows you how you can create and destroy
Ice objects in response to client requests, and how to
ensure that these operations are thread-safe. The lesson
also discusses issues regarding the uniqueness of object
identities, and how to deal with objects that are
abandoned by clients.

• By the completion of this lesson, you will have a
thorough understanding of how to provide life cycle
operations in a thread-safe manner.

Notes:

Object life cycle refers to the issues that surround creation and destruction of objects. This
lesson shows you how you can create and destroy Ice objects in response to client
requests, and how to ensure that these operations are thread-safe. The chapter also
discusses issues regarding the uniqueness of object identities, and how to deal with
objects that are abandoned by clients.

12-1-1 Lesson Objectives
By the completion of this lesson, you will have a thorough understanding of how to
provide life cycle operations in a thread-safe manner.

Object Life Cycle Object Creation

Copyright © 2005-2010 ZeroC, Inc. 12.3

12-2 Object Creation

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-2

Object Creation
Object creation typically relies on the factory pattern:
exception NameInUse {};

interface Directory extends Node {
Directory* createDir(string name)

throws NameInUse;

};

• The factory operation creates a new Ice object as a side-effect and
returns the proxy to the newly-created object.

• As far as the Ice run time is concerned, a factory operation is no
different from any other operation.

• The factory operation behaves like a constructor and can accept
whatever arguments are necessary to create the new object.

• Often, factory operations also throw exceptions to indicate errors that
might be caused by invalid arguments or that are detected by the
operation implementation.

Notes:

The canonical way to create a new Ice object is to provide a factory operation on some
interface.

The factory operation creates a new Ice object and returns its proxy.

You can have object factories with more than one create operation, for example, to cater
for alternative ways of creating an Ice object (requiring different parameters), or to allow
for the creation of more than one type of object. As far as the Ice run time is concerned, a
factory operation is no different from any other operation. It is the implementation of that
operation that causes a new Ice object to spring into existence as a side effect.

You should always write factory operations such that they completely initialize an object.
Avoid interfaces that use one operation to create an object and another operation to
initialize that object; such designs are brittle because they make it possible to end up with
uninitialized or partially initialized objects.

Other variations on the factory pattern are possible. For example, you can define
operations that create a number of objects instead of a single one, and you need not
necessarily return the proxy to the newly-created objects, provided the client then has
some other way to obtain the proxies to these objects later (for example, from a collection
manager interface).

Object Life Cycle Object Creation

Copyright © 2005-2010 ZeroC, Inc. 12.4

Implementation of the factory operation is usually trivial. The easiest way to create a new
Ice object is to instantiate a new servant, initialize the servant, and add it to the active
servant map:

public DirectoryPrx
createDir(String name, Ice.Current c)
{
 // Check parameters.
 //
 if(!nameIsValid(name))
 {
 throw new NameInUse();
 }

 // Instantiate a servant.
 //
 Directory d = new DirectoryI(name, this);

 // Add servant to ASM.
 //
 Ice.ObjectPrx o = c.adapter.addWithUUID(d);

 // Return proxy.
 //
 return DirectoryPrxHelper.uncheckedCast(o);
}

The crucial step in this code is to add a servant to the ASM. (This is known as servant
activation.) Note that we use addWithUUID here to create a unique identity for the new
Ice object. Alternatively, depending on your application, you may have some servant state
that is unique for each Ice object and that can be used as the object identity instead of a
UUID.

The code uses an uncheckedCast to down-cast the proxy for the new object to
DirectoryPrx. This is guaranteed to work because we know that the object just added
to the ASM is indeed a directory.

The nameIsValid method checks whether a file or directory with the same name exists
already (not shown).

Note the use of the Current object that is passed to the operation. In this case, we use it
to get access to the object adapter for the directory servant, in order to call
addWithUUID. (We discuss the Current object in detail in Section 12-4.)

Object Life Cycle Object Creation and Thread Safety

Copyright © 2005-2010 ZeroC, Inc. 12.5

12-3 Object Creation and Thread Safety

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-3

Object Creation and Thread Safety
If clients can call create concurrently, you must interlock:

public synchronized FilePrx
createFile(String name, Ice.Current c)

throws NameInUse
{

if(!nameIsValid(name))
{

throw NameInUse();
}

// Instantiate servant, add to ASM,
// and return proxy here...

}

Notes:

For threaded applications, the factory operation usually requires a lock because clients
may attempt to create the same object with the same identity concurrently. It is usually
easiest to retain the lock for the entire create operation because object creation tends to
be rare.

If you need better concurrency (for example, because create is long-running), you can
release the lock once you have established that object creation will succeed, and once you
have taken steps to prevent other clients from creating a second object with the same
identity (for example, by adding the object identity to a vector or map of existing objects).

Object Life Cycle The Current Object

Copyright © 2005-2010 ZeroC, Inc. 12.6

12-4 The Current Object

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-4

The Current Object
Every operation invocation is passed an object of type Ice::Current:

dictionary<string, string> Context;

enum OperationMode {
Normal, \Nonmutating, \Idempotent

};

local struct Current {
ObjectAdapter adapter;
Connection con;
Identity id;
string facet;
string operation;
OperationMode mode;
Context ctx;
int requestId;

};

The Current object provides information about the current invocation.

Notes:

Every operation implementation receives a trailing parameter of type Ice::Current.
At run time, this parameter provides information about the current request:

 adapter

This field specifies the object adapter that was used to dispatch the request. As we
saw in Section 12-2, it is useful to have this information available in order to add
new entries to the ASM. (Without this information, you would have to store the
adapter in a static or global variable, which would be cumbersome.) Note that the
ObjectAdapter interface provides a getCommunicator operation that
returns the communicator via which the invocation was dispatched. Again, this is
useful because it avoids the need to store the communicator in a global variable.

 con

This field provides access to a Connection object that contains details of the
connection via which the request was invoked. (See the Ice manual for details.)

 id

This field provides the object identity of the target object for the request.

Object Life Cycle The Current Object

Copyright © 2005-2010 ZeroC, Inc. 12.7

 facet

This field provides the target facet of the operation. The facet is normally the
empty string. (See the Ice manual for details on facets and versioning.)

 operation

This field contains the name of the operation that was invoked.

 mode

This field specifies whether the corresponding Slice operation is an ordinary
operation or is qualified as idempotent.

 ctx

This field provides a map of name–value pairs that can be sent implicitly with
every invocation.

Although you can set and get these name–value pairs from application code, we
recommend that you do not use the ctx field. (It is intended mainly for the
implementation of services and usually not used by applications; see the Ice
manual for details.)

 requestId

This field provides the request ID that is used by the Ice protocol to associate a
request with its response. For twoway operations, this is a positive integer. For
oneway invocations, the request ID is zero and, for collocated invocations (that is,
invocations where client and server share the same communicator within a single
process), the request ID is -1.

Object Life Cycle Object Destruction

Copyright © 2005-2010 ZeroC, Inc. 12.8

12-5 Object Destruction

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-5

Object Destruction
To destroy an object, add an operation that instructs the object to
commit suicide:
exception DirNotEmpty {};

interface Node {
void destroy() throws DirNotEmpty;

};

• The implementation of destroy removes the servant from the ASM
and destroys whatever resources are held by the servant.

• Clients invoking on the proxy for the destroyed object receive
ObjectNotExistException.

• As far as the Ice run time is concerned, destroy is an ordinary
operation without special significance.

• Do not add destroy to the factory. If you do, you need to keep track
of which factory created what object.

Notes:

To enable clients to destroy an object, add a destroy operation to the object’s interface.
You can add whatever exceptions are necessary to indicate any application-specific error
conditions that prevent the object from being destroyed.

As far as the Ice run time is concerned, your implementation of destroy need only
remove the corresponding servant’s entry from the ASM. This is known as servant
deactivation. Clients that use the object’s proxy after destroy has been called receive
an ObjectNotExistException. However, it is likely that your implementation of
destroy needs to do other application-specific cleanup, such as closing file descriptors
or deleting a database record.

In general, you should add destroy to the object itself, instead of adding a destroy
operation to the object’s factory. Adding the operation to the factory forces clients to
remember which factory created each object. For an application with several factories and
object types, this rapidly becomes unwieldy.

Object Life Cycle Implementing Object Destruction

Copyright © 2005-2010 ZeroC, Inc. 12.9

12-6 Implementing Object Destruction

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-6

Implementing Object Destruction
The object adapter provides a remove operation that removes an entry
from the ASM:
local interface ObjectAdapter {

Object remove(Identity id);
// ...

};

remove breaks the link between the object identity and the servant,
effectively destroying the Ice object.

• The operation returns the servant that was removed.

• Calling remove on an object identity that is not in the ASM raises
NotRegisteredException.

• If the server code does not hold a reference to the servant elsewhere,
the servant becomes eligible for garbage collection as soon as the
last executing operation leaves the servant.

Notes:

Object destruction involves breaking the link between an object’s identity and its servant,
by calling remove on the object adapter. As soon as the ASM entry for a servant is
removed, any incoming invocations for the object are rejected with an
ObjectNotExistException.

Typically, your server code will have only one reference to each servant, namely the
reference that is part of the ASM entry. This means that, once you have called remove,
the servant becomes eligible for garbage collection as soon as the last executing operation
on the servant completes. (This is particularly important for threaded applications, in
which several concurrent invocations may be active in the same servant.)

To implement a destroy operation, you must call remove on the object adapter. In
addition, you must clean up whatever application-specific resources are held by the
servant. This might involve closing file descriptors, deleting a database entry, or any other
actions that are appropriate for your application.

Here is one way to implement a destroy operation:

public void
destroy(Ice.Current c)
 throws DirNotEmpty

Object Life Cycle Implementing Object Destruction

Copyright © 2005-2010 ZeroC, Inc. 12.10

{
 c.adapter.remove(c.id);

 // Servant is now inaccessible to clients.

 // Remove any servant-specific state here...
}

Object Life Cycle Object Destruction and Thread Safety

Copyright © 2005-2010 ZeroC, Inc. 12.11

12-7 Object Destruction and Thread Safety

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-7

Object Destruction and Thread Safety
You must avoid a race condition if destroy can be called concurrently:
public synchronized void

destroy(Ice.Current c)

{
if(_destroyed)

throw new Ice.ObjectNotExistException();
// Remove any servant-specific state here...
c.adapter.remove(c.id);
_destroyed = true;

}

public synchronized void
write(String[] text, Ice.Current c) throws IOError
{

if(_destroyed)
throw new Ice.ObjectNotExistException();

// ...

}

Notes:

If operations can be called concurrently, you must ensure that all but the first call to
destroy on the same object raise ObjectNotExistException. Moreover, all
other operations must also lock the servant and check the _destroyed flag. To see
why, assume for the moment that we do not have a _destroyed flag and that two
clients concurrently call destroy and write. The following sequence of events can
occur:

1. Thread A calls write and is suspended immediately on entry to the operation, before
it can acquire the lock.

2. Thread B calls destroy. It finds the servant unlocked, locks it, destroys the servant
state, and unlocks the servant again.

3. Thread A resumes and acquires the lock. However, destroy has already finished
and the servant may no longer be in a usable state. For example, destroy could
have closed network or database connections, deallocated memory, or otherwise
changed the state of the servant such that write would fail or do something
nonsensical.

To avoid this problem, the generic approach is:

 Add a boolean _destroyed flag to the servant.

Object Life Cycle Object Destruction and Thread Safety

Copyright © 2005-2010 ZeroC, Inc. 12.12

 Make operations synchronized and, on entry to the operation, test the
_destroyed flag. If the flag is set, throw ObjectNotExistException.

 This effectively ensures that, once destroy has been called by a client, no other
operations can enter the servant. In addition, those operations that have already
entered the servant, but have not yet acquired the lock, immediately terminate
with ObjectNotExistException.

Object Life Cycle When to Remove Servant State?

Copyright © 2005-2010 ZeroC, Inc. 12.13

12-8 When to Remove Servant State?

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-8

When to Remove Servant State?
Avoid removing servant state in the servant’s finalizer:
• destroy often must perform clean-up that can fail, such as

closing network connections or flushing files.

If you delay physical removal of servant resources until the
finalizer runs and something goes wrong, you end up with
inconsistent state: destroy has completed successfully, but
physical servant state is still there!

• If anything goes wrong in the finalizer, the finalizer cannot
throw exceptions. (The best it can do is log the error.)

Notes:

You might be tempted to implement destroy as follows:

public void
destroy(Ice.Current c)
 throws ObjectNotExistException
{
 try
 {
 c.adapter.remove(c.id);
 }
 catch(Ice.NotRegisteredException)
 {
 throw new ObjectNotExistException();
 }
 _destroyed = true;
}
protected void

Object Life Cycle When to Remove Servant State?

Copyright © 2005-2010 ZeroC, Inc. 12.14

finalize() throws Throwable
{
 try
 {
 // Flush files, close transactions, etc...
 if(_destroyed)
 {
 // Remove persistent state, such as database records..
 }
 }
 catch(Exception ex)
 {
 // Log error here because throwing will do nothing.
 // Probably best to abort at this point...
 }
}

The idea here is to take advantage of the finalizer which (might) run eventually.

This works fine, as long as nothing goes wrong. However, if the clean-up actions do
something that might fail, we end up with a big problem.

 destroy has already completed successfully so, as far as the client is concerned,
the Ice object was destroyed; however, when the finalizer runs, we find that it is
not possible to remove all the state of the object (for example, because a remote
database has become inaccessible). Now the system is in an inconsistent state: as
far as the client is concerned, the object was destroyed but, physically, the
object’s state still exists. Depending on exactly how your application works, this
may be benign or disastrous.

 The finalizer has no way to report the failure, other than to log an error.

Object Life Cycle Object Identity and Uniqueness

Copyright © 2005-2010 ZeroC, Inc. 12.15

12-9 Object Identity and Uniqueness

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-9

Object Identity and Uniqueness
The Ice object model assumes that Ice objects have globally-unique
identities.
• If you use UUIDs as object identities, this is guaranteed to be the

case.
• If you use application-specific data as object identities, this is not

guaranteed—the application must enforce sufficient uniqueness.
Technically, object identities must be unique per object adapter.
Object identity is embedded in the proxy for an object and sent over the
wire with each invocation.
If object identities are globally unique, ObjectNotExistException is
reliable:
• Once a client receives ObjectNotExistException from an object, all

future attempts to contact the object will either fail, or also raise
ObjectNotExistException.

Notes:

Each Ice object has an identity. The identity of an object is an arbitrary string. You can
use UUIDs as object identities (for example, by calling
ObjectAdapter::addWithUUID), or you can use application-specific identities
(usually, by taking part of the object state and using it as the identity; for example, for a
Person object, a social security number would be an obvious choice).

The uniqueness of object identity has implications with respect to object life cycle. In
particular, with application-assigned identities, the uniqueness of the identities is
controlled by the application. Minimally, object identities must be unique per object
adapter, because the ASM uses the identity as the key to locate a servant: you cannot have
two servants with the same object identity in the same ASM.

The object identity of an Ice object is stored in the proxy for the object; when a client
invokes an operation, the identity is sent over the wire to the server as part of the request;
the server uses the identity to locate the correct servant for the invocation.

If object identities are globally unique (that is, no two Ice objects ever use the same
identity for all time), ObjectNotExistException is a reliable indication of object
death: once destroyed, the object stays destroyed forever, because its identity is never
reused.

Object Life Cycle Object Identity and Uniqueness (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 12.16

12-10 Object Identity and Uniqueness (cont. 1)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-10

Object Identity and Uniqueness (1)
interface File {

void destroy();
// ...

};

interface FileFactory {
File* create(string pathname);

};

Assume that the path name is used as the object identity. A client can now do:

FileFactoryPrx ff = ...;
FilePrx f = ff.create("/fred");
// Write to new file...
// Pass f to some other process...

// Later:
f.destroy();
f = ff.create("/fred");
// Write to new file...

Notes:

If application-specific data is used as object identity, it can be difficult to enforce
uniqueness of identities. As shown in the above example, the following sequence of
events is possible:

1. A client creates a file with the identity /fred and initializes the file contents.

2. The client passes the proxy for the file to some other process.

3. Some time later, the same (or a different) client destroys the file.

4. Eventually, some client creates another file with the identity /fred.

As far as the Ice run time is concerned, this is perfectly legal. However, re-using an object
identity in this manner can potentially be confusing:

 Normally, ObjectNotExistException is expected to be a death certificate:
once one invocation raises ObjectNotExistException, all future
invocations will also raise ObjectNotExistException (or fail to reach the
server entirely). However, if object identities are reused, after having raised
ObjectNotExistException, a future invocation via the same proxy can
work again.

 If clients store proxies away (for example, in a database), a future invocation can
end up in an entirely different and unexpected object, with possibly surprising
results.

Object Life Cycle Object Identity and Uniqueness (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 12.17

12-11 Object Identity and Uniqueness (cont. 2)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-11

Object Identity and Uniqueness (2)
FileFactoryPrx ff = ...;
FilePrx f = ff.create("/fred");

// Pass proxy to some other process...

// Later...

f.destroy();

// Still later...

// Use same identity for different type of object:
ThingFactoryPrx tf = ...;
ThingPrx t = tf.create("/fred");

If a client invokes on the File proxy after the object is reincarnated as a Thing,
it may get an OperationNotExistException, MarshalException, or even
undefined behavior!

Notes:

The above example is more pathological with respect to re-use of object identities:

1. A client creates a file with the identity /fred and initializes the file contents.

2. The client passes the proxy for the file to some other process.

3. Some time later, the same (or a different) client destroys the file.

4. Still later, the identity /fred is used for a different type of object, Thing.

5. A client that still holds a proxy to the original File object and invokes on operation
on the file will be confronted with rather surprising behavior:

 Most likely, the client will receive an OperationNotExistException,
assuming that the operation being invoked has a name that is valid for a File,
but does not exist for a Thing.

 If File and Thing happen to use common operation names, but use different
parameters for these operations, the client will most likely receive a
MarshalException (if the parameters for the File operation do not decode
correctly as the parameter types expected by the Thing operation).

Object Life Cycle Object Identity and Uniqueness (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 12.18

However, it is possible that the parameters happen to be similar enough to decode
successfully, in which case the client does not get an exception, but has invoked a
completely unrelated operation on a different object with essentially random
parameter values!

The latter case can be particular surprising if both File and Thing support a destroy
operation. In that case, the client will believe that it has successfully destroyed the file
(even though the file was destroyed already) and, to make things worse, has destroyed a
completely unrelated object!

Object Life Cycle Uniqueness Recommendations

Copyright © 2005-2010 ZeroC, Inc. 12.19

12-12 Uniqueness Recommendations

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-12

Uniqueness Recommendations
Consider using UUIDs as object identity. UUIDs are convenient
because they make name clashes impossible.

If you use application-assigned object identity, pay attention to
uniqueness:

• Ideally, do not ever re-use an identity.

• If you re-use identities, write your application to cope with this:

• Avoid storing proxies in clients beyond their “use-by date.”

• Do not build semantics into your application that expect
ObjectNotExistException to be a definitive death certificate.

• Use separate namespaces for object identities for different
object types (for single object adapters), or

• Use different object adapters for different types of objects.

• If you want to use IceGrid’s well-known objects, you must use an
identity that is unique within the IceGrid domain.

Notes:

As far as the Ice run time is concerned, there is no problem with re-using identities1: from
Ice’s perspective, at any given time, an object identity either maps to a servant or it does
not. If a servant can be found, a request can be dispatched successfully or not, depending
on whether the operation name exists and the parameter values can be successfully
unmarshaled and the results successfully marshaled back to the client. However, for the
application, as we saw in the preceding example, reusing identities can potentially cause
problems.

We suggest that you follow the above recommendations. If you decide to use application-
defined identities, and there is a potential for an identity to be reused, you simply must
write the application to cope with objects that get reincarnated (and somehow make sense
of that).

However, in general, avoid using the same namespace for identities on the same object
adapter if you re-use identities; the potential for sending invocations to the wrong type of
object makes this a bad idea. We recommend using a unique prefix for the identities of
objects of different type to avoid the potential name clash.

1 The Ice run time never tracks the existence of Ice objects in order to remain stateless.

Object Life Cycle Dealing with Stale Objects

Copyright © 2005-2010 ZeroC, Inc. 12.20

12-13 Dealing with Stale Objects

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-13

Dealing with Stale Objects
Consider stateful client–server interactions, such as for an online
shop:

• The client creates a shopping cart object via a factory.

• Purchases are added to the cart by invoking operations on the
cart.

• When the client is finished, and presses the “Buy” button, the
order is processed and the cart is destroyed.

What happens if the client never finishes the purchasing process
or crashes?

The server holds onto resources on behalf of the client so,
unless the server does something in this case, it will eventually
run out of resources.

Notes:

A common problem for distributed applications with life cycle operations is the question
of how to guarantee that the server will reclaim resources. In the above example, the
problem is caused by the client neglecting to call destroy (or placeOrder) as
expected. The server allocates resources, such as memory, to the client. The expectation is
that the client will eventually either purchase the items in the shopping cart or cancel the
order (either way, thereby destroying the cart) so the server can reclaim its resources.
However, if the client crashes or simply forgets to complete the purchasing process, the
server is left sitting on the allocated memory with no way of knowing that the client has
crashed or has forgotten to complete the process. (A dead client is indistinguishable from
a slow client, as far as the server is concerned.)

Typically, the situation is made more complex by the fact that several objects may be
involved: the server may, for example, create a number of objects on behalf of the client,
all of which must eventually be destroyed.

Object Life Cycle Dealing with Stale Objects (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 12.21

12-14 Dealing with Stale Objects (cont. 1)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-14

Dealing with Stale Objects (1)
Basic approach for cleaning up stale objects:

• Instead of creating objects directly, each client creates a single
session object.

• The session object is the object factory that allows the client to
create all the objects it needs.

• The session keeps track of which objects were created.

• The session offers a refresh operation. The client is expected to
call refresh every n seconds.

• If the client fails to call refresh for more than n seconds, the server
destroys the session object, and all objects created by that session.

This approach guarantees:

• resources will be reclaimed if a client crashes

• resources are not reclaimed prematurely (while still being used)

Notes:

There are various ways to deal with the stale object problem. For example, the server can
arbitrarily cap the number of live sessions and use an evictor (see Chapter 18). However,
the problem with this approach is that, once the limit is reached, the server must destroy
an existing session for each new session that is created. In turn, this risks destroying a
session that may have been around for quite a long time, but is still being used.

Another approach is to use a timeout: if an object has not been used for n seconds, the
server destroys it. The drawback is the same one as for the previous approach: the server
might destroy an object that is still being used (albeit rarely).

You might also consider implementing a distributed reference counting mechanism. If so,
matters are likely to get worse than better: the reference count must reliably be updated if
a client crashes, which is non-trivial. And distributed reference counting does not scale (as
evidenced by DCOM). We therefore strongly discourage this approach.

The above slide presents a pragmatic approach to solving the problem. It guarantees not to
destroy resources prematurely, and it guarantees that resources will be reclaimed if a
client crashes.

Object Life Cycle Dealing with Stale Objects (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 12.22

Note that the approach does not deal with the case of a client that has a bug and forgets to
either complete a purchase or to empty the shopping cart: as long as the client process
stays alive, its objects will not be destroyed by the server. However, the above approach
effectively deals with the most common problem: how to recover in the face of network
failure or crashed clients.

In addition, the approach is remarkably non-intrusive to existing object implementations.
This means that you can back-patch it into existing implementations with little effort.

Object Life Cycle Dealing with Stale Objects (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 12.23

12-15 Dealing with Stale Objects (cont. 2)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-15

interface SomeObject {
// Lots of operations here...

void destroy();

};

interface Session { // One session per client
SomeObject* create(/* params */);
idempotent string getName();
void refresh();
idempotent void destroy();

};
interface SessionFactory { // Singleton

Session* create(string name);

};

Dealing with Stale Objects (2)

Notes:

12-15-1 Interface Definitions
The above slide shows the Slice definitions to support reaping of stale objects.

SomeObject is the interface for the objects that clients create as part of their
interactions with the server. (There is no need to limit this design to a single interface—
you can just as easily support several interfaces.)

The Session interface acts as the factory for application objects. (Again, you could
have several factory operations for different types of objects in this interface.) The session
has a name, so it can be identified (for example, in log messages); that name is returned
by the getName operation.

The refresh operation is expected to periodically be called by the client to keep its
session alive. If the client neglects to call refresh before the session timeout expires,
the session destroys itself and all objects that were created by its factory operations.

In addition, the session provides a destroy operation, so clients can explicitly destroy a
session (instead of just letting the timeout expire).

The SessionFactory interface allows clients to create a named session. (The session
factory is a singleton object—all clients use the same session factory to create their
sessions.)

Object Life Cycle Dealing with Stale Objects (cont. 3)

Copyright © 2005-2010 ZeroC, Inc. 12.24

12-16 Dealing with Stale Objects (cont. 3)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-16

The reaper thread:

• maintains a list of existing sessions

• provides an add operation so sessions can be added

• runs an infinite loop:

• sleep for n seconds

• get the current time

• for each existing session, if the session’s timestamp is older than
n seconds, call destroy on the session and remove the session
from the list

• if a call to destroy raises ObjectNotExistException, remove
the session from the list

Dealing with Stale Objects (3)

Notes:

12-16-1 Implementing the Reaper Thread
The reaper thread is run in the server. It is responsible for identifying and destroying stale
sessions. Here is the class definition:
class ReapThread extends Thread
{
 public void
 run();

 public synchronized void
 terminate();

 public synchronized void
 add(SessionPrx proxy, SessionI session);

 private boolean _terminated = false;
 private long _timeout = 60000; // 60 seconds

Object Life Cycle Dealing with Stale Objects (cont. 3)

Copyright © 2005-2010 ZeroC, Inc. 12.25

 private java.util.HashMap<SessionPrx, SessionI> _sessions =
 new java.util.HashMap<SessionPrx, SessionI>();
}

The add operation adds a proxy and servant to the _sessions map. The map contains
both the proxy and the servant reference so we can invoke Slice operations via the proxy,
as well as invoke other member functions via the reference.
public synchronized void
add(SessionPrx proxy, SessionI session)
{
 _sessions.put(proxy, session);
}

The terminate method allows us to ask the reaper thread to shut down. (We need to do
this when the server shuts down.) Note that this also destroys all existing sessions.
public synchronized void terminate()
{
 try
 {
 for(SessionPrx sp : _sessions.keySet())
 {
 try
 {
 sp.destroy();
 }
 catch(Ice.ObjectNotExistException ex)
 {
 // Ignore.
 }
 }
 }
 catch(Ice.ConnectionRefusedException ex)
 {
 }
 _sessions.clear();
 _terminated = true;
 notify();
}

When the server wants to shut down, it calls terminate from its main thread.
terminate iterates over the sessions and calls destroy on each session. Note that the
code ignores ObjectNotExistException when it tries to destroy a session. This is
because clients may have explicitly called destroy on a session since the reaper thread
last ran, so it is possible for a session to be destroyed already, but to still be in the reaper’s
list of sessions.

Object Life Cycle Dealing with Stale Objects (cont. 3)

Copyright © 2005-2010 ZeroC, Inc. 12.26

Also note the code stops trying to destroy sessions if it encounters a
ConnectionRefusedException. This exception can be raised if the server calls
terminate after shutting down the communicator. In that case, the server is on the way
out so there is no point in continuing to destroy sessions.

Finally, terminate sets the _terminated flag and then calls notify to wake up
the reaper thread, and then waits for the reaper thread to exit.

Here is the run method, which implements the reaper thread:
public void

run()

{

 synchronized(this)

 {

 while(!_terminated)

 {

 try

 {

 wait(_timeout);

 }

 catch(InterruptedException ex)

 {

 }

 if(!_terminated)

 {

 Iterator< Map.Entry<SessionPrx, SessionI> > i =

 _sessions.entrySet().iterator();

 while(i.hasNext())

 {

 Map.Entry<SessionPrx, SessionI> e = i.next();

 SessionPrx sp = e.getKey();

 SessionI s = e.getValue();

 try

 {

 if(System.currentTimeMillis() -s.timestamp() >
 _timeout)

 {

 sp.destroy();

 i.remove();

 }

 }

 catch(Ice.ObjectNotExistException ex)

 {

 i.remove();

 }

 }

 }

Object Life Cycle Dealing with Stale Objects (cont. 3)

Copyright © 2005-2010 ZeroC, Inc. 12.27

 }

 }

}

The thread sits in a loop that runs as long as _terminate is false. The first action inside
the loop is to lock the monitor and enter a timed wait. This releases the lock and puts the
reaper thread to sleep. The reaper thread returns from wait when one of two events
occurs:

 The server’s main thread has called terminate, which sets _terminate to
true and calls notify.

In this case, when the reaper thread wakes up, it finds that _terminate is now
true and exits.

 The timeout of the timed wait has expired.

In this case, when the reaper thread wakes up, it finds that _terminate is still
false and executes the body of the loop.

In the loop body, the reaper thread iterates over the entries in the _sessions map. It
gets the current system time and compares it to the timestamp of the session. If the time
that has elapsed since the session was last refreshed is greater than the timeout, the reaper
thread calls destroy on the session. (The reaper thread reacquires the current time for
each entry in the map because destroying a session could potentially take a while.) Note
that, as for terminating, the reaper thread ignores ObjectNotExistException
because a client may have explicitly called destroy on a session that is still in the
reaper’s map. If the reaper destroys a session (or finds that the session was destroyed
previously), it also removes it from the _sessions map.

Object Life Cycle Dealing with Stale Objects (cont. 4)

Copyright © 2005-2010 ZeroC, Inc. 12.28

12-17 Dealing with Stale Objects (cont. 4)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-17

Dealing with Stale Objects (4)
class SessionFactoryI extends _SessionFactoryDisp

{

public SessionFactoryI(ReapThread r)

{

_reaper = r;

}

public SessionPrx create(String name, Ice.Current c)

{

SessionI session = new SessionI();

SessionPrx proxy = SessionPrxHelper.uncheckedCast(

c.adapter.addWithUUID(session));

_reaper.add(proxy, session);

return proxy;

}

private ReapThread _reaper;

}

Notes:

12-17-1 Implementing the Session Factory
The session factory implementation is very simple. The constructor initializes the
_reaper member with the reaper thread, and the create method instantiates a new
session and adds it to the reaper’s list of sessions by calling add on the reaper.

Object Life Cycle Dealing with Stale Objects (cont. 5)

Copyright © 2005-2010 ZeroC, Inc. 12.29

12-18 Dealing with Stale Objects (cont. 5)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-18

Dealing with Stale Objects (5)
class SessionI extends _SessionDisp

{
public synchronized SomeObjectPrx
create(Ice.Current c);

public synchronized void
destroy(Ice.Current c);

public void
refresh(Ice.Current c);

public long
timestamp();

private long _timestamp = System.currentTimeMillis();
private boolean _destroyed = false;
private java.util.LinkedList<SomeObjectPrx> _objs =

new java.util.LinkedList<SomeObjectPrx>();
}

Notes:

12-18-1 Implementing the Session
The session (which acts as the factory for SomeObject objects) provides the
(application-specific) create factory operation. It creates a new servant and adds it to the
ASM as usual, and also adds the proxy for the servant to the list of servants it has created:
public synchronized SomeObjectPrx
create(Ice.Current c)
{
 if(_destroyed)
 {
 throw Ice.ObjectNotExistException();
 }
 SomeObjectI o = new SomeObjectI();
 SomeObjectPrx proxy = SomeObjectPrxHelper.uncheckedCast(
 c.adapter.addWithUUID(o));
 _objs.add(proxy);
 return proxy;

Object Life Cycle Dealing with Stale Objects (cont. 5)

Copyright © 2005-2010 ZeroC, Inc. 12.30

}

The destroy operation destroys all objects created by this session.

public synchronized void
destroy(Ice.Current c)
{
 if(_destroyed)
 {
 throw new Ice.ObjectNotExistException();
 }
 _destroyed = true;

 try
 {
 c.adapter.remove(c.id);
 for(SomeObjectPrx p : _objs)
 {
 c.adapter.remove(p.ice_getIdentity());
 }
 }
 catch(Ice.ObjectAdapterDeactivatedException ex)
 {
 // This method is called on shutdown of the server,
 // in which case this exception is expected.

 }
 _objs.clear();
}

The only noteworthy point here is that the implementation ignores
ObjectAdapterDeactivatedException. This prevents exceptions from
propagating out of the operation when a session is destroyed as part of server shut-down.

The refresh operation is called by the client to keep the session alive and stores the
current time in the session’s _timestamp member:

public synchronized void
refresh(Ice.Current c)
{
 if(_destroyed)
 {
 throw new Ice.ObjectNotExistException();
 }
 _timestamp = System.currentTimeMillis();
}

Object Life Cycle Dealing with Stale Objects (cont. 6)

Copyright © 2005-2010 ZeroC, Inc. 12.31

12-19 Dealing with Stale Objects (cont. 6)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-19

Dealing with Stale Objects (6)
The server’s main program:

• instantiates an object adapter

• creates the reaper thread and starts it

• creates the session factory and adds it to the ASM

• activates the object adapter

• waits for shut-down

Once shut-down is complete, the server:

• calls terminate on the reaper thread

• joins with the reaper thread

Notes:

12-19-1 Server main Implementation
The server’s main implementation is very simple. After creating and starting the reaper
thread, the server creates the session factory and then waits for shut-down. Once
waitForShutdown returns, the server calls terminate on the reaper thread and
waits for the reaper thread to finish by joining with it:
Ice.ObjectAdapter adapter =

 communicator().createObjectAdapter("SessionFactory");

ReapThread reaper = new ReapThread();

reaper.start();

SessionFactoryI sf = new SessionFactoryI(reaper);

SessionFactoryPrx sfproxy = SessionFactoryPrxHelper.uncheckedCast(

 adapter.add(sf, communicator().stringToIdentity("SessionFactory")));

// ...

adapter.activate();

// ...

Object Life Cycle Dealing with Stale Objects (cont. 6)

Copyright © 2005-2010 ZeroC, Inc. 12.32

communicator().waitForShutdown();

reaper.terminate();

while(true)

{

 try

 {

 reaper.join();

 break;

 }

 catch(InterruptedException ex)

 {

 }

}

Object Life Cycle Dealing with Stale Objects (cont. 7)

Copyright © 2005-2010 ZeroC, Inc. 12.33

12-20 Dealing with Stale Objects (cont. 7)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

12-20

Dealing with Stale Objects (7)
The client must call refresh every n seconds to keep the
session alive.

Instead of arbitrarily sprinkling calls to refresh through the
code, in the hope that they get executed often enough, run
a background thread:

• The refresh thread sits in a loop and calls refresh
periodically. To be safe, make the refresh interval a little
bit shorter than the server’s reap interval.

• The refresh thread provides a terminate method so the
client’s main thread can join with it when the time comes
to shut down.

Notes:

12-20-1 Client-Side Implementation
The client must keep the session alive by calling refresh periodically. You could
sprinkle your code with calls to refresh in the hope that they will be executed often
enough. But that is not only messy, it also fails if the client’s main thread blocks for some
reason. A much better approach is to run a separate thread that takes care of calling
refresh periodically. To be safe, the refresh interval for the client should be somewhat
shorter than the server’s reap interval. For example, if the reap interval is one minute, the
client could call refresh every 50 seconds to account for the occasional network delay.

The implementation of the refresh thread is very simple and shown in full here.
class SessionRefreshThread extends Thread
{
 SessionRefreshThread(long timeout, SessionPrx session)
 {
 _timeout = timeout;
 _session = session;

Object Life Cycle Dealing with Stale Objects (cont. 7)

Copyright © 2005-2010 ZeroC, Inc. 12.34

 }

 public void
 run()
 {
 synchronized(this)
 {
 while(!_terminated)
 {
 try
 {
 wait(_timeout);
 }
 catch(InterruptedException ex)
 {
 }
 if(!_terminated)
 {
 try
 {
 _session.refresh();
 }
 catch(Ice.LocalException ex)
 {
 _terminated = true;
 }
 }
 }
 }
 }
 public synchronized void
 terminate()
 {
 _terminated = true;
 notify();
 }

 private boolean _terminated = false;
 private long _timeout;
 private SessionPrx _session;
}

As for the server-side reaper thread, the refresh thread sleeps for the timeout interval and
calls refresh each time the timer expires. The terminate method allows the client’s
main thread to terminate the refresh thread.

Object Life Cycle Dealing with Stale Objects (cont. 7)

Copyright © 2005-2010 ZeroC, Inc. 12.35

The only changes to the normal client code are to create a proxy to the session factory,
create a session, and to pass the session to the refresh thread’s constructor. Before going
about its normal business, the client starts the refresh thread and, when the client is ready
to shut down, it calls terminate on the refresh thread and joins with it:

SessionFactoryPrx factory = ...;

SessionPrx session = factory.create(name);

SessionRefreshThread refresh =
 new SessionRefreshThread(50000, session);
refresh.start();
try
{
 // Main client logic here...
 //
 // The refresh thread must be terminated before destroy
 // is called, otherwise it might get
 // ObjectNotExistException. refresh is set to null so
 // that if session.destroy() raises an exception the
 // thread will not be re-terminated and re-joined.
 //
 refresh.terminate();
 while(true)
 {
 try
 {
 refresh.join();
 break;
 }
 catch(InterruptedException ex)
 {
 }
 }

 refresh = null;
 session.destroy();
}
catch(Exception ex)
{
 //
 // The refresh thread must be terminated in the event of
 // a failure.
 //
 if(refresh != null)

Object Life Cycle Dealing with Stale Objects (cont. 7)

Copyright © 2005-2010 ZeroC, Inc. 12.36

 {
 refresh.terminate();
 while(true)
 {
 try
 {
 refresh.join();
 break;
 }
 catch(InterruptedException ex)
 {
 }
 }
 }
}

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

th Java

5-2010 Zero

13
O

oC, Inc.

3 A
bje

Ass
ect

sign
Life

nme
e C

ent
Cyc

t 6
cle

Assignment 6: Object Life Cycle Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 13.2

13 Assignment 6: Object Life Cycle

13-1 Exercise Overview

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-1

Exercise Overview
In this exercise, you will:

• add life cycle operations to the file system server.

By the completion of this exercise, you will have gained
experience in how to implement thread-safe life cycle
operations.

Notes:

In this exercise, you will add life cycle operations to the file system server.

13-1-1 Exercise Objectives
By the end of this exercise, you will have gained experience in how to implement thread-safe life
cycle operations.

Assignment 6: Object Life Cycle Life Cycle

Copyright © 2005-2010 ZeroC, Inc. 13.3

13-2 Life Cycle

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-2

Life Cycle

• In this exercise, you will add life cycle operations to the file
system server.

• The server is the thread-safe server you developed in
Assignment 5, so your implementation will need to be
thread-safe.

Notes:

In this exercise, you will add life cycle operations to the file system server. The server is the
thread-safe server you developed in Assignment 5, so your implementation will need to be thread-
safe.

Assignment 6: Object Life Cycle What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 13.4

13-3 What You Need to Do

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-3

What You Need to Do
1. Examine the code in Server.java.
2. Look at the implementations of makeRootDir and the

DirectoryI constructors in Filesystem/DirectoryI.
3. Implement the createDir method.
4. Implement the createFile method.
5. Use the test client that is contained in Client.java to test

your create operations.
6. Implement the DirectoryI.destroy method.
7. Implement the FileI.destroy method.
8. Edit Client.java and enable the commented-out section

marked PART_2.

Notes:

1. Examine the code in Server.java. Note that the server now uses a static function
DirectoryI.makeRootDir to create the root directory.

2. Look at the implementations of makeRootDir and the DirectoryI constructors in
Filesystem/DirectoryI. Make sure you understand how the DirectoryI
constructor works—you will need to use it in the implementations of createDir and
createFile.

3. DirectoryI provides three helper function that you can use to implement the life cycle
operations:

 checkNameInUse

This function checks if a node with the same name exists already in a directory. If so, it
throws a NameInUse exception. Use this function in your create implementations to
throw an exception if a client attempts to create a node with the same name as an existing
node.

 addChild

As before, this function can be called by the create implementations in order to add a
newly-created node to its parent directory.

 removeChild

Assignment 6: Object Life Cycle What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 13.5

This function performs the inverse operation, namely, it removes the specified node from
the parent’s list of nodes. This function is for use by the destroy implementations.

Implement the createDir method.

4. Implement the createFile method.

5. Client.java contains a test client that you can use to test your create operations. Look
through the client code (up to the point marked PART_2) to see what it does. Compile the
client and run it with your server. If you have implemented the create operations correctly, the
client will list the contents of the file system without error.

6. Implement the DirectoryI.destroy method. Make sure that you prevent attempts to
destroy a directory that is not empty, and that you prevent attempts to destroy the root
directory. (Throw a DirNotEmpty exception in either case.)

Pay attention to the thread safety of your implementation. In particular, consider what
happens if a client performs a list operation on a directory at the same time as another
client destroys a node in the same directory. Also make sure that any operations that have
been dispatched, but have not yet entered the body of the operation implementation, correctly
raise ObjectNotExistException if a client concurrently destroys the operation’s node.

7. Implement the FileI.destroy method.

8. Edit Client.java and enable the commented-out section marked PART_2. Compile the
client and run it against your server. If you have implemented your destroy operations
correctly, the client will complete without error.

Assignment 6: Object Life Cycle Thread Safety Modifications

Copyright © 2005-2010 ZeroC, Inc. 13.6

13-4 Thread Safety Modifications

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-4

Thread Safety Modifications
• To prevent a race condition, we need to test, on entry to

every operation, whether the object has been previously
destroyed. Rather than repeat the same code in every
operation, we can bundle the test into a helper function.

Notes:

To prevent the race condition shown in Section 12-7, we need to test, on entry to every operation,
whether the object has been previously destroyed. Rather than repeat the same code in every
operation, we can bundle the test into a helper function:
class DirectoryI extends _DirectoryDisp
{
 // ...
 private void
 checkDestroyed()
 {
 if(_destroyed)
 {
 throw new Ice.ObjectNotExistException();
 }
 }
 private boolean _destroyed = false;
 // ...
}

The helper function tests the _destroyed member and throws
ObjectNotExistException if it is set. Note that this method is not synchronized because it
is called only from methods that themselves are synchronized.

On entry to all other operations, we call checkDestroyed:

Assignment 6: Object Life Cycle Thread Safety Modifications

Copyright © 2005-2010 ZeroC, Inc. 13.7

public final class DirectoryI extends _DirectoryDisp
{
 // ...
 public synchronized String
 name(Ice.Current c)
 {
 checkDestroyed();

 // ...
 }

 public synchronized FilePrx
 createFile(String name, Ice.Current c)
 throws NameInUse
 {
 checkDestroyed();

 // ...
 }

 public synchronized DirectoryPrx
 createDir(String name, Ice.Current c)
 throws NameInUse
 {
 checkDestroyed();

 // ...
 }

 public void
 destroy(Ice.Current c)
 throws DirNotEmpty
 {
 synchronized(this)
 {
 checkDestroyed();
 // ...
 }
 // ...
 }

 public synchronized NodeDetails[]
 list(Ice.Current c)
 {
 checkDestroyed();

 // ...
 }

 // ...
}

If an object is destroyed while another operation on the same object has already been dispatched,
but the operation has not entered the operation body yet, the client correctly receives an
ObjectNotExistException (rather than allowing the operation to run on a destroyed Ice
object which, depending on the implementation, may cause problems).

Note that the FileI implementation uses the same strategy for its operations (not shown).

Assignment 6: Object Life Cycle createDir Implementation

Copyright © 2005-2010 ZeroC, Inc. 13.8

13-5 createDir Implementation

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-5

createDir Implementation
• createDir calls checkDestroyed in case this directory has

been destroyed before the operation body started to
execute and then calls checkNameInUse to make sure that
clients cannot create two directories with the same
name.

Notes:

createDir calls checkDestroyed in case this directory has been destroyed before the
operation body started to execute and then calls checkNameInUse to make sure that clients
cannot create two directories with the same name. Note that this code is free from race conditions
because createDir is a synchronized method.

The code then instantiates a new DirectoryI and creates a proxy for the new object.

Most of the work is done by the DirectoryI constructor, which adds the new servant to the
_contents member and the ASM:
public synchronized DirectoryPrx
createDir(String name, Ice.Current c)
 throws NameInUse
{
 checkDestroyed();

 checkNameInUse(name);
 DirectoryI d = new DirectoryI(name, this, c.adapter);
 return DirectoryPrxHelper.uncheckedCast(c.adapter.createProxy(
 c.adapter.getCommunicator().stringToIdentity(d._myID)));
}

public
DirectoryI(String name, DirectoryI parent, Ice.ObjectAdapter adapter)

Assignment 6: Object Life Cycle createDir Implementation

Copyright © 2005-2010 ZeroC, Inc. 13.9

{
 assert(parent != null);

 _name = name;
 _parent = parent;
 _myID = java.util.UUID.randomUUID().toString();
 parent.addChild(_myID, this);
 adapter.add(this, adapter.getCommunicator().stringToIdentity(_myID));
}

Assignment 6: Object Life Cycle createFile Implementation

Copyright © 2005-2010 ZeroC, Inc. 13.10

13-6 createFile Implementation

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-6

createFile Implementation
• The createFile implementation is analogous to createDir.

• The FileI constructor does much of the work

Notes:

The createFile implementation is analogous to createDir. Again, the FileI constructor
does much of the work:
public class DirectoryI extends _DirectoryDisp
{
 // ...

 public synchronized FilePrx
 createFile(String name, Ice.Current c)
 throws NameInUse
 {
 checkDestroyed();

 checkNameInUse(name);
 FileI f = new FileI(name, this, c.adapter);
 return FilePrxHelper.uncheckedCast(c.adapter.createProxy(
 c.adapter.getCommunicator().stringToIdentity(f._myID)));
 }
 // ...
}

public class FileI extends _FileDisp
{
 public

Assignment 6: Object Life Cycle createFile Implementation

Copyright © 2005-2010 ZeroC, Inc. 13.11

 FileI(String name, DirectoryI parent, Ice.ObjectAdapter adapter)
 {
 assert(parent != null);

 _name = name;
 _myID = java.util.UUID.randomUUID().toString();
 _parent = parent;
 parent.addChild(_myID, this);
 adapter.add(this, adapter.getCommunicator().stringToIdentity(_myID));
 }

 // ...
}

Assignment 6: Object Life Cycle DirectoryI.destroy Implementation

Copyright © 2005-2010 ZeroC, Inc. 13.12

13-7 DirectoryI.destroy Implementation

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-7

DirectoryI.destroy Implementation
public void

destroy(Ice.Current c)

{

synchronized(this)

{

checkDestroyed();

_destroyed = true;

}

c.adapter.remove(c.id);

_parent.removeChild(_myID);

}

Notes:

public void
destroy(Ice.Current c)
{
 synchronized(this)
 {
 checkDestroyed();
 _destroyed = true;
 }
 c.adapter.remove(c.id);
 _parent.removeChild(_myID);
}

As for the other operations, destroy first checks whether the object was previously destroyed,
and it prevents attempts to destroy a non-empty directory or the root directory. It then removes the
ASM entry for the object and removes the destroyed node from the parent directory’s
_contents map by calling removeChild.

Note that destroy is not a synchronized method, but uses a synchronized block instead. This is
necessary to prevent a potential deadlock with list. list is a synchronized method because,
while it iterates over the _contents map, it must prevent concurrent modification of that map.

Assignment 6: Object Life Cycle DirectoryI.destroy Implementation

Copyright © 2005-2010 ZeroC, Inc. 13.13

However, to assign to the name member of each of the returned NodeDetails classes, list
invokes the name operation on each child node. In turn, name is a synchronized method. If
destroy would be a synchronized method (instead of using a synchronized block inside the
method), the following scenario could arise:

1. Client A calls list on a directory, which locks the directory.

2. Client B concurrently calls destroy on one of the child directories of the directory being
listed by Client A. If destroy were a synchronized method, that would lock the child
directory, so client A holds a lock on the parent, and client B holds a lock on the child.

3. The list implementation, on behalf of client A, invokes the name operation on the
directory that is locked by client B.

4. The destroy operation, on behalf of client B, calls removeChild on the directory locked
by client A.

At this point, the code deadlocks because each thread holds a lock that is required by the other
thread in order to proceed.

The separate synchronized block in destroy prevents this deadlock: the destroy
implementation releases the lock on itself before it attempts to lock the parent directory as part of
removeChild, which makes the deadlock impossible.

An alternative way of preventing the deadlock would be to make the _name member public, in
which case list could assign the name member of each NodeDetails class without invoking
the name operation, and thereby avoid having to lock a child node.

Either approach is possible. The main point to keep in mind here is that destroy and list can
easily cause circular lock dependencies, which complicates the code. For this reason, a reaping
approach is often the better solution.

Assignment 6: Object Life Cycle FileI.destroy Implementation

Copyright © 2005-2010 ZeroC, Inc. 13.14

13-8 FileI.destroy Implementation

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

13-8

FileI.destroy Implementation
The FileI.destroy implementation is analogous to
DirectoryI.destroy:

public void

destroy(Ice.Current c)

{

synchronized(this)

{

checkDestroyed();

_destroyed = true;

}

c.adapter.remove(c.id);

_parent.removeChild(_myID);

}

Notes:

The FileI.destroy implementation is analogous to DirectoryI.destroy:
public void
destroy(Ice.Current c)
{
 synchronized(this)
 {
 checkDestroyed();
 _destroyed = true;
 }

 c.adapter.remove(c.id);
 _parent.removeChild(_myID);
}

Ice Pro
Studen

Copyr

ogramming wit
nt Workbook

ight © 2005-20

th Java

010 ZeroC, Inc..

114 Glaacieer22

Glacier2 Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 14.2

14 Glacier2

14-1 Lesson Overview

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-1

Lesson Overview

• Glacier2 is the Ice firewall traversal service. It allows
clients and servers to communicate even if they are
separated by a firewall.

• By the completion of this lesson, you will understand
how Glacier2 works, how to configure it correctly, and
how to modify your applications to work with Glacier2.

Notes:

Glacier2 is the Ice firewall traversal service. It allows clients and servers to communicate
even if they are separated by a firewall.

14-1-1 Lesson Objectives
By the completion of this lesson, you will understand how Glacier2 works, how to
configure it correctly, and how to modify your applications to work with Glacier2.

Glacier2 Running an Ice Server Behind a Firewall

Copyright © 2005-2010 ZeroC, Inc. 14.3

14-2 Running an Ice Server Behind a Firewall

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-2

Running an Ice Server Behind a Firewall
If a server is behind a firewall, clients can access the server if:
• The firewall opens an incoming port for clients.
• The firewall port-forwards incoming connections on that port to the real

server port.
• The server is configured to advertise the firewall’s host name and port

in its proxies instead of its own name and port by setting the
<adapter-name>. PublishedEndpoints property.

Problems of this approach:
• Each server requires a separate hole in the firewall.
• If clients need to connect to the server from the inside network as well

as the outside network, either:
• traffic is routed from the inside network to the firewall and back into

the inside network again (inefficient), or
• the server must publish internal and external addresses in its

proxies.

Notes:

The above slide presents one way to run an Ice server behind a firewall. To allow clients
to connect to the server, the firewall must open a port and forward all traffic on that port
to the server’s machine on the inside network. In addition, the server must be configured
to publish the firewall’s host name and port in its proxies, instead of its own host name
and port. (Ice supports this with the <adapter-name>.PublishedEndpoints
property. If that property is set, the adapter publishes the specified endpoints in its
proxies, instead of the server’s actual endpoints.)

A significant problem with this approach is that, if the server only publishes the firewall’s
endpoints in its proxies, traffic from clients that are inside the network is routed via the
firewall: from the inside client to the external interface of the firewall, and from there
back into the inside network to the server. (This assumes that the firewall will accept
incoming connections from the inside network, which may not be the case.)

An alternative is to have the server publish its own host name and port as well as the
firewall’s, so the proxies that are created by the server are usable by both external and
internal clients. However, we strongly discourage this solution. When a proxy contains
multiple endpoints, Ice’s default behavior is to select one at random. Unless you take
great care in constructing and configuring your proxies, it is quite likely that clients will
randomly choose an inappropriate endpoint, resulting in potential delays during
connection establishment, arbitrary connection refusals, or routing inefficiencies.

Glacier2 Running an Ice Server Behind a Firewall

Copyright © 2005-2010 ZeroC, Inc. 14.4

Finally, by far the biggest problem is typically that each Ice server that must be accessible
from the outside network requires a separate hole in the firewall. Even if an
organization’s security policy allows this, it creates an administrative problem because
the firewall requires its rules to be updated each time a server is added or removed.

Glacier2 Glacier2

Copyright © 2005-2010 ZeroC, Inc. 14.5

14-3 Glacier2

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-3

Glacier2
Glacier2 is the Ice firewall-traversal service. It provides:
• firewall traversal for servers with no change to code or

configuration
• firewall traversal for clients with minimal code and configuration

changes
• callbacks from servers to clients via a bidirectional connection (with

minimal changes)
• authentication via user name and password (among others)
• session management
• secure communication via SSL
• request batching and filtering
Glacier2 requires only a single port to be opened in the firewall to
support an arbitrary number of clients and servers.
Alternatively, Glacier2 can also be the firewall for Ice servers. (No port
forwarding is required in this case.)

Notes:

Glacier2 secures traffic from clients on an external, insecure network to servers on an
internal, secure network. Glacier2 can be used with minimal disturbance to existing
applications: for servers (unless callbacks are used), Glacier2 is effectively invisible; for
clients, only minimal code and configuration changes are necessary in order to work with
Glacier2.

Glacier2 eliminates the problem of having to open a separate port for each Ice server on
the internal network: an arbitrary number of clients and servers can communicate via that
single port. If Glacier2 runs behind a corporate firewall, the firewall must be configured
to open a single port and forward the traffic on that port to Glacier2. Alternatively, if
Glacier2 runs on a machine with two interfaces, one for the external network and one for
the internal network, it can act as the firewall for Ice servers, so no port forwarding by the
corporate firewall is necessary.

In addition, Glacier2 provides a few other services, such as authentication, session
management, request batching and filtering, and secure communications via SSL.

Note that Glacier2 does not work with UDP, only TCP and SSL.

Glacier2 Glacier2 as a Firewall

Copyright © 2005-2010 ZeroC, Inc. 14.6

14-4 Glacier2 as a Firewall

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-4

Glacier2 as a Firewall
Glacier2 acting as an Ice firewall, running on a machine with external
and internal interfaces:

• Clients on the external network connect to Glacier2’s external
interface, instead of directly connecting to the server.

• Glacier2 forwards the request to the server on the internal network.
• Glacier2 receives the server’s reply on the internal interface and

forwards the reply to the client via the external interface.

Glacier2Client Server

External Network Internal Network

5.6.7.8 10.1.1.2

10.1.1.1

Notes:

If Glacier2 runs on a machine with external and internal interfaces, it can act as a firewall
for Ice servers. Glacier2 is configured to listen on a specific port of the external interface
for incoming client requests and forwards these requests via the internal interface to the
server. The server does not know that anything unusual is going on: as far as the server is
concerned, Glacier2 is the client. When the server’s operation completes, it returns the
results to Glacier2 via the same connection on which it received the incoming request; in
turn, Glacier2 forwards the reply to the client.

Glacier2 Glacier2 Behind a Firewall

Copyright © 2005-2010 ZeroC, Inc. 14.7

14-5 Glacier2 Behind a Firewall

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-5

Glacier2 Behind a Firewall
Glacier2 with a single internal interface running behind a firewall:

• Firewall is configured to port-forward 5.6.7.8:8000 to 10.1.1.1:4063.

• Client connects to firewall, which forwards traffic to Glacier2 on the
internal network.

• Glacier2 forwards the request to the server.

• Glacier2 receives the server’s reply and forwards the reply to the
firewall.

• The firewall forwards the reply to the client.

Port 8000 Port 4063

FirewallC lient Glacier2

External Network Internal Network

5.6.7.8 10.1.1.1

Server

10.1.1.2

Notes:

If Glacier2 runs on the internal network only and is behind a firewall, the scenario is
almost the same as if Glacier2 acts as the router/firewall itself. The only difference is that
the firewall must be configured to port-forward incoming requests on a single port to
Glacier2’s client port.

Glacier2 Running Glacier2

Copyright © 2005-2010 ZeroC, Inc. 14.8

14-6 Running Glacier2

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-6

Running Glacier2
Glacier2’s executable is called glacier2router.

UNIX daemon options:
• --daemon

• --noclose

• --nochdir

Use the iceserviceinstall utility to configure it as a Windows service.

Notes:

Glacier2 is packaged as the glacier2router executable. The program has only a few
options to allow it to be run as a UNIX daemon, and you can use the
iceserviceinstall tool to configure it as a Windows service. (See the Ice manual
for details.)

The configuration of Glacier2, such as setting endpoints and timeouts, is achieved by
setting properties.

Glacier2 Glacier2 Configuration

Copyright © 2005-2010 ZeroC, Inc. 14.9

14-7 Glacier2 Configuration

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-7

Glacier2 Configuration
To configure Glacier2 to be usable by clients, you must minimally set
the Glacier2.Client.Endpoints property.

It specifies the endpoint at which Glacier2 listens for incoming client
requests, for example:
Glacier2.Client.Endpoints=tcp -p 4063

• If Glacier2 cannot be accessed by hostile clients, TCP is usually the
appropriate protocol.

• If Glacier2 should allow access only for specific clients or if you
require secure communcations, you should specify SSL as the
protocol.
If you specify SSL, you must also configure the IceSSL plugin by setting:
Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=...
IceSSL.CertAuthFile=...
IceSSL.CertFile=...
IceSSL.KeyFile=...

Notes:

The only mandatory configuration item for Glacier2 is provided by the
Glacier2.Client.Endpoints property. It specifies the port number and IP
address (or host name) at which Glacier2 listens for client requests. (If the property is not
set, glacier2router terminates with an error message.)

Glacier2 Glacier2 Sessions

Copyright © 2005-2010 ZeroC, Inc. 14.10

14-8 Glacier2 Sessions

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-8

Glacier2 Sessions
For each client, Glacier2 maintains a session. Clients must obtain a Router
proxy and use it to create a session:
module Glacier2 {

exception CannotCreateSessionException {
string reason;

};
exception PermissionDeniedException {

string reason;
};
interface Session {

void destroy();
};
interface Router extends Ice::Router {

// ...
Session* createSession(string userId,

string password)
throws PermissionDeniedException,

CannotCreateSessionException;
};

};

Notes:

Glacier2 maintains a session on behalf of each client. To use Glacier2, each client must
create a session, supplying a user name and password.

The session is created by calling createSession on the Glacier2::Router
interface.

Here is the canonical code for doing this:
Ice.RouterPrx defaultRouter = communicator().getDefaultRouter();

if(defaultRouter == null)

{

 System.err.println("No default router configured");

 return;

}

Glacier2.RouterPrx router = Glacier2.RouterPrxHelper.checkedCast(defaultRouter);

String username = ...

String password = ...

try

{

 router.createSession(username, password);

}

Glacier2 Glacier2 Sessions

Copyright © 2005-2010 ZeroC, Inc. 14.11

catch(Glacier2.PermissionDeniedException ex)

{

 System.err.println("Permission denied: " + ex.reason);

}

catch(Glacier2.CannotCreateSessionException ex)

{

 System.err.println("Cannot create session: " + ex.reason);

}

The communicator is configured with a router. (We will see how to do this shortly.)
getDefaultRouter returns that configured router.

A router is an object that is interposed into the invocation path of the client: any
invocations made by the client are sent to the router instead; the router then forwards the
invocation to a specific endpoint, such as the configured Glacier2 endpoint.

Note that the code ignores the return value from createSession. This is because,
unless you arrange otherwise, createSession returns a null proxy: the session that is
created in this way is known as an internal session, that is, it is a session that is solely
maintained by Glacier2 and inaccessible to the client. (We will see how to create external
sessions in Section 14-15.)

Once the client has created the session, it can communicate with the server as usual, that
is, the preceding code is the only code change that is necessary to make an existing client
work with Glacier2.

If clients connect to Glacier2 via a public network and you care about security, you
should configure Glacier2 and the client to communicate via SSL; if you use TCP, the
user name and password are sent over the wire in clear text. Note that you can also use
SSL credentials to create a session by calling
createSessionFromSecureConnection—see the Ice Manual for details.

Glacier2 Client Configuration

Copyright © 2005-2010 ZeroC, Inc. 14.12

14-9 Client Configuration

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-9

Client Configuration
You must set two properties for the client to use Glacier2:
• Ice.Default.Router=Glacier2/router:tcp \

-h 5.6.7.8 -p 4063

• Ice.ACM.Client=0

Ice.Default.Router specifies which Glacier2 router the client will
use. The endpoint details must match the configuration of Glacier2.
Ice.ACM.Client must be disabled by explicitly setting it to zero (or set
to a value larger than Glacier2’s session timeout). (ACM is enabled by
default.)
You should also disable retries by setting:
• Ice.RetryIntervals=-1

Notes:

For the client to transparently communicate with its servers via Glacier2, it must be
configured by setting the Ice.Default.Router property. Once set, this property
takes care of transparently redirecting all client requests to Glacier2. The default identity
of the router is Glacier2/router (that is, the category of the object identity is
Glacier2 and its name is router.) You can change the identity used by the Glacier2
router by setting the Glacier2.InstanceName property in the Glacier2
configuration.

You must disable automatic connection management (ACM). ACM is enabled by default
and closes connections that have been idle for more than one minute. This is transparent
to the client: if a client makes another invocation after more than a minute of idle time,
the Ice run time automatically re-establishes a connection. However, with Glacier2, ACM
must be disabled because, once a connection is lost, the Ice run time cannot transparently
re-establish it because doing so requires re-authentication and re-creating a session
object. (It is okay to leave ACM enabled, provided its timeout value is larger than
Glacier2’s session timeout. Refer to Section 14-14.)

Glacier2 Client Configuration

Copyright © 2005-2010 ZeroC, Inc. 14.13

For the same reason, you should disable retries by setting the Ice.RetryIntervals
property to -1. Normally, the Ice run time will attempt to transparently re-establish a lost
connection before raising a ConnectionLostException in the client. But, in the
presence of sessions, connections cannot be re-established. Not disabling retries does no
real harm, but delays the ConnectionLostException that is raised in the client
until after the attempt to re-establish the connection has failed. Disabling retries avoids
this delay.

Glacier2 Creating a Password File

Copyright © 2005-2010 ZeroC, Inc. 14.14

14-10 Creating a Password File

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-10

Creating a Password File
Glacier2 uses a password file to authenticate clients.

The password file contains one line for each user, with the user name and
encrypted password:

joe ZpYd5t1p4.d0Y

marc G8Y0Z67QgnIwI

You must configure the name and location of the password file by setting
Glacier2.CryptPasswords to the path name of the file.

You can use the openssl utility to create encrypted passwords:

$ openssl

OpenSSL> passwd

Password: openSesame

Verifying - Password: openSesame

ZpYd5t1p4.d0Y

Notes:

Before clients can use Glacier2, you must allocate user IDs and passwords to clients. By
default, Glacier2 uses the UNIX crypt algorithm for passwords. The password file that
Glacier2 uses is configured with the Glacier2.CryptPasswords property. (A
relative path name for this property is interpreted as a path relative to Glacier2’s working
directory.) The password file contains one line for each user, with the user name and
password separated by white space.

As shown above, you can use the openssl tool to generate the encrypted passwords.

Glacier2 Custom Authentication

Copyright © 2005-2010 ZeroC, Inc. 14.15

14-11 Custom Authentication

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-11

Custom Authentication
You can implement a custom authentication mechanism by
implementing the PermissionsVerifier interface:
module Glacier2 {

interface PermissionsVerifier

{
idempotent bool checkPermissions(

string userId,
string password,
out string reason);

};

};

Set Glacier2.PermissionsVerifier to the proxy of this object.

If set, Glacier2 uses the specified verifier instead of the default
password mechanism.

checkPermissions must return true if authentication is successful,
false otherwise.

Notes:

You can integrate Glacier2 with a pre-existing authentication mechanism by
implementing an Ice object of type PermissionsVerifier and setting
Glacier2.PermissionsVerifier to the proxy of that object. If set, this property
causes Glacier2 to delegate authentication to the specified object, instead of using the
default password file mechanism. Your implementation of checkPermissions must
return true if authentication is successful, false otherwise. If the return value is false, you
return an explanation of why authentication failed in the out-parameter reason. That
string is made available to the client in the corresponding
PermissionDeniedException that is raised from the client’s call to
createSession.

Keep in mind that, if Glacier2 communicates with the permissions verifier over an
unsecure network, you should configure the verifier’s proxy for SSL, otherwise the user
name and password will be sent over the network in clear text.

Glacier2 The Admin Interface

Copyright © 2005-2010 ZeroC, Inc. 14.16

14-12 The Admin Interface

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-12

The Admin Interface
The Admin interface allows remote shut-down of Glacier2:
module Glacier2 {

interface Admin
{

void shutdown();
};

};

The default identity of this interface is Glacier2/admin.

The endpoint at which this object listens is determined by the property
Glacier2.Admin.Endpoints.

If the property is not set, Glacier2 does not enable this interface.

Do not make this object available on a public network or, if you do, only
use an SSL endpoint!

Notes:

The Admin interface permits remote shut-down of Glacier2.1 Make sure to secure this
interface correctly (if you enable it at all).

1 Currently, this interface is rather bare. ZeroC will add to it over time, according to customer demand.

Glacier2 Custom Object Identities

Copyright © 2005-2010 ZeroC, Inc. 14.17

14-13 Custom Object Identities

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-13

Custom Object Identities
If you are running several Glacier2 processes, you will need to use
different object identities for each one.
• Glacier2.InstanceName

This property changes the identity of the Router and Admin objects in
Glacier2. For example:
• Glacier2.InstanceName=Fred

results in Fred/router and Fred/admin as the identities of the router
and admin objects.

If you change the identity, the client configuration must be changed
accordingly:
• Ice.Default.Router=Fred/router:-h 5.6.7.8 -p 4063

Notes:

You may need to run several Glacier2 instances, for example, to permit clients to access
two distinct corporate servers in two different networks. You can assign a custom identity
to Glacier2’s Router and Admin objects by setting the property
Glacier2.InstanceName.

Glacier2 Session Timeouts

Copyright © 2005-2010 ZeroC, Inc. 14.18

14-14 Session Timeouts

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-16

Session Timeouts
Unless you configure a timeout, session state is maintained
by Glacier2 indefinitely.

To configure a timeout, set the property
Glacier2.SessionTimeout to the timeout value in seconds.

Any client activity resets the timeout. If there is no activity
on the session for the specified timeout, Glacier 2 destroys
the session.

If a session is destroyed, the client must create a new
session, reauthenticating itself.

A destroyed session results in a ConnectionLostException in
the client.

Notes:

In general, you should set a session timeout when using Glacier2. If you do not, session
state is maintained indefinitely for each client. This means that, if a client crashes or
otherwise gets disconnected, Glacier2 retains the state for that client’s session until the
client creates a new session (in which case the new session replaces the old one).

The Glacier2.SessionTimeout property sets the timeout value in seconds. Any
inactivity on the client’s session for longer than the configured timeout results in a
ConnectionLostException in the client when the client invokes another operation.

If you do not configure a session timeout, session state is retained indefinitely by
Glacier2. An easy way to ensure that the client’s session stays alive is to use a similar
approach as outlined in Chapter 12: run a background thread in the client that periodically
calls refreshSession on the Router object. Note that the helper class
Glacier2.Application (see Section 14-19) handles this task for you.

Glacier2 Explicit Session Management

Copyright © 2005-2010 ZeroC, Inc. 14.19

14-15 Explicit Session Management

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-15

Explicit Session Management
If you need to track session activity of clients, you can create an
external session:

• Implement the Glacier2 SessionManager interface

• Configure Glacier2 to use your session manager by setting
Glacier2.SessionManager to the session manager’s proxy.

• Implement the Glacier2 Session interface.

If you use explicit session management, your create operation can
return the session’s proxy to the client. In that case, the client receives
a non-null proxy (instead of the null proxy it gets for an internal
session).

Explicit session management is useful to, for example, log when clients
create and destroy a session.

Your create operation must handle re-creating a dropped session.

Note that, for SSL, there is also an SSLSessionManager.

Notes:

You can use explicit session management for Glacier2 (for example, to log when sessions
are created or destroyed, or to set up other contextual information).

Glacier2 delegates session creation to a SessionManager. You can change the session
manager that is used by Glacier2 by setting the Glacier2.SessionManager
property to the session manager’s proxy. Here are the relevant interfaces:
module Glacier2 {
 exception CannotCreateSessionException {

 string reason;

 };

 interface Session {

 void destroy();

 };

 interface SessionControl {
 ...
 };

 interface SessionManager {

 Session* create(string userId, SessionControl* control)

 throws CannotCreateSessionException;

Glacier2 Explicit Session Management

Copyright © 2005-2010 ZeroC, Inc. 14.20

 };

};

Your session manager must provide an implementation of the create operation. Note
that create must be able to handle creation of a session even if a session for the same
user already exists. This is necessary because, for example, a client may have lost
connectivity with Glacier2 and attempts to re-create its session. (This is especially
important if you do not set a session timeout—if your create operation cannot create a
session for a user who already has an existing session, each user can create a session
exactly once, but never again until you restart Glacier2.)

The create operation can (but need not) return the proxy for the new session. If you do
return a non-null proxy, the client can explicitly destroy its session by calling the
session’s destroy operation. (If you return a null proxy, clients can still destroy an
internal session by calling the router’s destroySession operation.)

Note that you can independently replace Glacier2’s PermissionsVerifier as well;
Glacier2 calls your create operation only after it has authenticated the client.

If you use Glacier2 with SSL, you can replace the corresponding
SSLPermissionsVerifier.

Glacier2 Supporting Callbacks

Copyright © 2005-2010 ZeroC, Inc. 14.21

14-16 Supporting Callbacks

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-16

Supporting Callbacks

To support callbacks from server to client, Glacier2 must have an
endpoint in the internal network.

The Glacier2.Server.Endpoints property configures that endpoint.
The property does not require a port, only a host name or

IP address:

Glacier2.Server.Endpoints=tcp –h 10.1.1.1

No code changes are required in the server for callbacks.

Bidirectional
Connection

Glacier2Client Server

Internal Network

5.6.7.8:
4068 10.1.1.2

10.1.1.1

External Network

Notes:

A server that makes callbacks on objects provided to it by the client cannot directly
invoke the operation on the client. Instead, the invocation must be routed back to the
client via Glacier2. For this to be possible, Glacier2 must provide an endpoint in the
internal network so the server can connect to Glacier2 for its outgoing callback
invocations. The endpoint for server callbacks is set via the
Glacier2.Server.Endpoints property. Note that this property does not require a
port number. (A host name or IP address is sufficient.)

On the client side, Glacier2 forwards the server’s invocation to the client over a
bidirectional connection. This is necessary because the client may be behind a firewall of
its own, and that firewall may not permit incoming connections. By forwarding the server
invocation to the client over the same connection that the client uses to connect to the
router, Glacier2 can ensure that callbacks work even if the client is behind such a
firewall.

Glacier2 Supporting Callbacks (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 14.22

14-17 Supporting Callbacks (cont. 1)

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-17

Supporting Callbacks (1)
Client requirements for callbacks:

• The client must have an object adapter (but no local endpoint is
necessary).

• Callback proxies created by this object adapter must use the router’s
server endpoint so that callback invocations from back-end servers are
sent to the router, and not sent directly to the client.

• To achieve this, the client must configure its callback object adapter
with a proxy for the router, using the <adapter-name>.Router
property or by calling createObjectAdapterWithRouter.

Notes:

If you look back at the picture in Section 14-16, you will see that, in order for the server
to invoke an operation on a client’s callback object, the server must connect to Glacier2’s
internal server endpoint instead of connecting directly to the client’s endpoint. This
means that any proxies that the client creates for its callback objects must contain
Glacier2’s internal server endpoint instead of the client’s endpoint (as would normally be
the case).

To achieve this, the object adapter that the client uses for its callback objects must be
configured with Glacier2’s router proxy by setting the <adapter-name>.Router
property:
<adapter-name>.Router=Glacier2/router:tcp -h 5.6.7.8 -p 4063

<adapter-name> must match the adapter name that the client uses for its callback
adapter. (Instead of using a property, you can also call
createObjectAdapterWithRouter when creating the adapter—see the Ice
manual for details.)

Glacier2 Supporting Callbacks (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 14.23

Internally, the Ice run time ensures that, when a client’s adapter is configured with a
router, any proxies created by the client contain the router’s internal server endpoint. (The
client’s object adapter obtains that information by invoking an operation on the router
that informs it of the internal server endpoint.) This also explains why it is not necessary
to specify a port number for the Glacier2.Server.Endpoints property: Glacier2
simply uses a free port (assigned by the operating system) and, when the client’s object
adapter asks the router for the server endpoint, the correct port number is returned to the
client-side run time.

Glacier2 Supporting Callbacks (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 14.24

14-18 Supporting Callbacks (cont. 2)

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-18

Supporting Callbacks (2)
When a server makes a callback, Glacier2 has to work out which client
the callback should go to.

For each client session, Glacier2 generates a unique category. That
category must be used by a client in the identity of its callback objects.
Ice.RouterPrx r = communicator.getDefaultRouter();

Glacier2.RouterPrx router =

Glacier2.RouterPrxHelper.checkedCast(r);

String category = router.getCategoryForClient();

Ice.Identity id = new Ice.Identity();

id.category = category;

id.name = java.util.UUID.randomUUID().toString();

SomeObject p = new SomeObjectI();

adapter.add(p, id);

Because each client uses a different category, Glacier2 can examine
the category to determine to which client to forward a callback made by
the server.

Notes:

In order for callbacks to work correctly, Glacier2 must ensure that a callback that is made
by a server ends up in the correct client. However, the proxy for a callback object
contains Glacier2’s server endpoint instead of the client’s endpoint. This means that
Glacier2, when it receives a callback invocation from a server, cannot use the endpoint on
which the server makes its callback to identify the client that should receive that
invocation.

This means that the only other information available for Glacier2 to identify the correct
client is the object identity or, specifically, the category member of the object identity:

 For each client session, Glacier2 generates a unique category string.

 Clients must use that category string for their callback objects. (The name
member of the object identity can be freely chosen by the client.)

 Clients can obtain the correct category to use by calling
getCategoryForClient on the Glacier2 router.

Glacier2 Helper Classes

Copyright © 2005-2010 ZeroC, Inc. 14.25

14-19 Helper Classes

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-19

Helper Classes
Ice includes helper classes that provide functionality commonly needed
by Glacier2 clients:

• Glacier2.Application is a subclass of Ice.Application that
simplifies the use of Glacier2 in command-line applications.

• Glacier2.SessionFactoryHelper and
Glacier2.SessionHelper offer greater flexibility for graphical
clients.

Notes:

Ice includes a number of helper classes to help you build robust Glacier2 clients.

The Ice.Application class, which we discussed in Chapter 6, encapsulates some
basic Ice functionality such as communicator initialization, communicator destruction,
and proper handling of signals and exceptions. The Glacier2.Application class
extends Ice.Application to add functionality that is commonly needed by Glacier2
clients:

 Keeps a session alive by periodically calling refreshSession from a
background thread

 Automatically restarts a session if a failure occurs

 Optionally creates an object adapter for callbacks

 Destroys the session when the application completes

The Glacier2.Application class is designed primarily for command-line
applications. Ice also includes a separate collection of classes that offer functionality
similar to Glacier2.Application but with greater flexibility to suit the needs of
graphical clients (see the Ice manual for details).

Glacier2 The Glacier2.Application Class

Copyright © 2005-2010 ZeroC, Inc. 14.26

14-20 The Glacier2.Application Class

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-20

Glacier2.Application
The Glacier2.Application class should look familiar to users of
Ice.Application:

package Glacier2;

public abstract class Application extends Ice.Application {

public class RestartSessionException extends Exception { }

public Application();

public Application(SignalPolicy signalPolicy);

public abstract Glacier2.SessionPrx createSession();

public abstract int runWithSession(String[] args)

throws RestartSessionException;

public static Glacier2.RouterPrx router();

public static Glacier2.SessionPrx session();

// ...

}

Subclasses must implement createSession and runWithSession.

Notes:

As for Ice.Application, the application’s main method must instantiate the
Glacier2.Application subclass and invoke its main method. In turn, main calls
createSession followed by runWithSession, both of which must be
implemented by the subclass.

As its name implies, createSession is where the subclass creates a new session with
the Glacier2 router. For example, the implementation might prompt the user for a user
name and password, and then invoke createSession on the router proxy (the router
proxy is available via the static router method). The implementation must return the
proxy for the new session (if any); the application can obtain this proxy at any time using
the static session method.

The runWithSession method contains the application’s main loop and is analogous
to the run method in Ice.Application. The argument vector passed to
runWithSession contains the arguments passed to Application.main with all
Ice-related options removed. The implementation must return zero to indicate success and
non-zero to indicate failure; this value becomes the return value of
Application.main.

Here is an example of a minimal subclass:

Glacier2 The Glacier2.Application Class

Copyright © 2005-2010 ZeroC, Inc. 14.27

public class Glacier2App extends Glacier2.Application
{
 public Glacier2.SessionPrx createSession()
 {
 String user = …;
 String password = …;
 try
 {
 return router().createSession(user, password);
 }
 catch(Exception ex)
 {
 ex.printStackTrace();
 System.exit(1);
 }
 }

 public int runWithSession(String[] args)
 throws Glacier2.RestartSessionException
 {
 // main loop goes here ...
 return 0;
 }

 public static void main(String[] args)
 {
 Glacier2App app = new Glacier2App();
 int status = app.main(args);
 System.exit(status);
 }
}

Glacier2 The Glacier2.Application Class (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 14.28

14-21 The Glacier2.Application Class (cont. 1)

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

14-21

Glacier2.Application (1)
Additional convenience methods simplify callbacks and session
management:

package Glacier2;

public abstract class Application extends Ice.Application {

// ...

public void sessionDestroyed();

public void restart()
throws RestartSessionException;

public String categoryForClient()
throws SessionNotExistException;

public Ice.Identity createCallbackIdentity(String name);

public Ice.ObjectPrx addWithUUID(Ice.Object servant);
public Ice.ObjectAdapter objectAdapter()

throws SessionNotExistException;

}

Notes:

Glacier2.Application provides a number of additional methods that Glacier2
applications will find useful:

 sessionDestroyed

This is a callback method that Application invokes after destroying the
current session. A subclass can override this method to take action when
connectivity with the Glacier2 router is lost.

 restart

At any time, runWithSession can raise RestartSessionException to
restart the current session. The restart method is provided as a convenience
for you to call when you wish to restart the session; this method always raises
RestartSessionException and therefore it never returns. main traps the
exception and restarts the session by invoking createSession followed by
another call to runWithSession.

 categoryForClient

Glacier2 The Glacier2.Application Class (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 14.29

This method returns the category to be used in the identities of all of the client’s
callback objects. The method raises SessionNotExistException if it is
called when no session has been established. The category string is cached to
minimize unnecessary remote invocations on the router.

 createCallbackIdentity

This method creates a new Ice identity for a callback object with the given
identity name. The category of the identity is set to the return value of
categoryForClient.

 addWithUUID

This method adds a servant to the callback object adapter’s Active Servant Map
using a UUID for the identity name and the return value of
categoryForClient for the identity category.

 objectAdapter

This method returns the object adapter used for callbacks, creating it if necessary.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

1

th Java

5-2010 Zero

15 A
U

oC, Inc.

As
Usin

sig
ng

gnm
Gla

men
acie

nt 7
er2

7
2

Assignment 7: Using Glacier2 Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 15.2

15 Assignment 7: Using Glacier2

15-1 Exercise Overview

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

15-1

Exercise Overview
In this exercise, you will

• modify the file system application to work with Glacier2.

By the end of this exercise, you will have gained experience
in how to configure Glacier2 and your applications, create
Glacier2 sessions, and communicate via Glacier2.

Notes:

In this exercise, you will modify the file system application to work with Glacier2.

15-1-1 Exercise Objectives
By the completion of this exercise, you will have gained experience in how to configure
Glacier2 and your applications, create Glacier2 sessions, and communicate via Glacier2.

Assignment 7: Using Glacier2 Using Glacier2

Copyright © 2005-2010 ZeroC, Inc. 15.3

15-2 Using Glacier2

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

15-2

Using Glacier2
• In this exercise, you will modify the application you

developed in Assignment 6 to communicate via Glacier2.

Notes:

In this exercise, you will modify the application you developed in Assignment 6 to
communicate via Glacier2.

Assignment 7: Using Glacier2 What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 15.4

15-3 What You Need to Do

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

15-3

What You Need to Do
1. The client needs to communicate with the server via Glacier2. Change the client to

use Glacier2.Application and add the missing code to create a Glacier2
session for the client.

2. Create a configuration file for Glacier2. For this exercise, because we do not have a
real firewall, you will run the client, server, and Glacier2 on the same machine. Use
the loopback address (127.0.0.1) for the configuration. Glacier2 should listen for
client requests on port 4063. Configure a session timeout of 30 seconds.

3. Create a password file for Glacier2 and modify the client source code to use the
correct user name and password.

4. Create a configuration file for the client to work with Glacier2.

5. Run Glacier2, the client, and the server. If you have set things up correctly, the
client will list the contents of the server’s file system.

6. Run Glacier2, the client, and the server with network tracing enabled. Examine the
port numbers that are used to convince yourself that the client indeed
communicates via Glacier2.

7. Change the client to use an invalid password and verify that Glacier2 correctly
rejects session creation.

Notes:

1. The client needs to communicate with the server via Glacier2. Change the client to
use Glacier2.Application and add the missing code to create a Glacier2
session for the client.

2. Create a configuration file for Glacier2. For this exercise, because we do not have a
real firewall, you will run the client, server, and Glacier2 on the same machine. Use
the loopback address (127.0.0.1) for the configuration. Glacier2 should listen for
client requests on port 4063. Configure a session timeout of 30 seconds.

3. Create a password file for Glacier2 and modify the client source code to use the
correct user name and password.

4. Create a configuration file for the client to work with Glacier2.

5. Run Glacier2, the client, and the server. If you have set things up correctly, the client
will list the contents of the server’s file system.

6. Run Glacier2, the client, and the server with network tracing enabled. Examine the
port numbers that are used to convince you that the client indeed communicates via
Glacier2.

7. Change the client to use an invalid password and verify that Glacier2 correctly rejects
session creation.

Assignment 7: Using Glacier2 Client Modifications

Copyright © 2005-2010 ZeroC, Inc. 15.5

15-4 Client Modifications

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

15-4

Client Modifications

Notes:

public class Client extends Glacier2.Application
{

 public Glacier2.SessionPrx createSession()
 {
 String username = "joe";

 String password = "joe";

 try

 {

 return router().createSession(username, password);

 }

 catch(Glacier2.PermissionDeniedException ex)

 {

 System.err.println("cannot create session: " + ex.reason);

 ex.printStackTrace();

 System.exit(1);

 }

 catch(Glacier2.CannotCreateSessionException ex)

 {

 System.err.println("cannot create session: " + ex.reason);

 ex.printStackTrace();

Assignment 7: Using Glacier2 Client Modifications

Copyright © 2005-2010 ZeroC, Inc. 15.6

 System.exit(1);

 }
 }

 public int runWithSession(String[] args)
 {

 // ...

 return 0;

 }

}

Assignment 7: Using Glacier2 Client Configuration

Copyright © 2005-2010 ZeroC, Inc. 15.7

15-5 Client Configuration

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

15-5

Client Configuration
Ice.Default.Router=Glacier2/router:tcp -h 127.0.0.1 -p 4063

Ice.ACM.Client=0

Ice.RetryIntervals=-1

Notes:

Ice.Default.Router=Glacier2/router:tcp -h 127.0.0.1 -p 4063

Ice.ACM.Client=0

Ice.RetryIntervals=-1

Assignment 7: Using Glacier2 Glacier2 Configuration

Copyright © 2005-2010 ZeroC, Inc. 15.8

15-6 Glacier2 Configuration

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

15-6

Glacier2 Configuration

Glacier2.Client.Endpoints=tcp -h 127.0.0.1 -p 4063

Glacier2.CryptPasswords=passwords

Glacier2.SessionTimeout=30

Notes:

Glacier2.Client.Endpoints=tcp -h 127.0.0.1 -p 4063

Glacier2.CryptPasswords=passwords

Glacier2.SessionTimeout=30

Assignment 7: Using Glacier2 Glacier2 Password File

Copyright © 2005-2010 ZeroC, Inc. 15.9

15-7 Glacier2 Password File

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

15-7

Glacier2 Password File
You need one line in the password file with a user name
and encrypted password, for example:
joe 0WULk8FE9fmwo

The encrypted password in this file is “joe”.

Notes:

You need one line in the password file with a user name and encrypted password, for
example:
joe 0WULk8FE9fmwo

The encrypted password in this file is “joe”.

Ice Pr
Stude

Copyr

rogramming w
ent Workbook

right © 2005-2

with Java
k

2010 ZeroC, Inc.

166 IcceGGridd

IceGrid Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 16.2

16 IceGrid

16-1 Lesson Overview

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-1

Lesson Overview
• IceGrid is the location and server activation service for

Ice.

• In this lesson you will learn to:
– use IceGrid to start servers on demand

– avoid hard-coding addresses and port numbers into proxies

– advertise application objects

– monitor the status of servers.

• By the completion of this lesson, you will understand
how IceGrid works, how to configure clients and servers
to take advantage of indirect binding and automatic
activation, and how to administer and troubleshoot
IceGrid.

Notes:

IceGrid is the location and server activation service for Ice. Using IceGrid, you can start
servers on demand, avoid hard-coding addresses and port numbers into proxies, advertise
application objects, and monitor the status of servers.

16-1-1 Lesson Objectives
By the completion of this lesson, you will understand how IceGrid works, how to
configure clients and servers to take advantage of indirect binding and automatic
activation, and how to administer and troubleshoot IceGrid.

IceGrid IceGrid

Copyright © 2005-2010 ZeroC, Inc. 16.3

16-2 IceGrid

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-2

IceGrid
IceGrid is a location and activation service:

• IceGrid allows clients to use indirect proxies that do not contain host
names (or IP addresses) and port numbers.

• IceGrid can activate servers on demand, when clients first issue a
request.

• IceGrid allows well-known proxies to be advertised. Clients can
bootstrap using proxies that contain the name of well-known objects,
instead of endpoint information.

IceGrid also provides advanced features:

• Replication and load balancing with automatic failover

• Allocation of servers to clients

• Status monitoring

• Application distribution

• Centralized application deployment

Notes:

IceGrid is the location and activation service for Ice. The main purpose of IceGrid is to
provide location transparency: using IceGrid, proxies no longer need to contain endpoint
information (which gets out of date if a server is moved to a different machine). Instead,
proxies contain symbolic names that are transparently resolved to the correct endpoint.
This also means that it is no longer necessary to run servers at a fixed port. Instead, you
can allow the OS to assign an unused port to each server and rely on IceGrid to work out
where the server is currently running.

IceGrid also can activate servers on demand: instead of having to start each server
manually and run it permanently, IceGrid can activate servers “just in time”, when the
first request for a server is sent by a client.

IceGrid provides a registry of well-known objects. Typically, these objects are the ones
that clients require to bootstrap (such as the root directory for the file system application).
Proxies to well-known objects do not contain endpoint information or an adapter ID, but
only a symbolic name.

IceGrid IceGrid

Copyright © 2005-2010 ZeroC, Inc. 16.4

These features of IceGrid make it easier and more flexible to configure an application. In
addition, IceGrid provides a number of advanced features, such as replication and load
balancing, allocation of servers to specific clients, application distribution and
deployment, as well as status monitoring. These features make it easy to configure and
deploy an application on a number of remote machines without having to separately
configure the application on each machine.

IceGrid IceGrid Components

Copyright © 2005-2010 ZeroC, Inc. 16.5

16-3 IceGrid Components

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-3

IceGrid Components
IceGrid consists of a single registry and one or more nodes:

• The IceGrid registry is a database that keeps track of known
applications and the servers that make up each application.
The registry also knows details such as how to start each server,
what command-line options to provide at server start-up, and the
values of environment variables to be set for each server.

A single registry is used for a number of machines.

• An IceGrid node is essentially a server start-up and monitoring
process.
On each machine on which IceGrid-aware servers run, an IceGrid
node process is required.

Each IceGrid node communicates with its IceGrid registry to keep it
informed of the status of servers.

Notes:

IceGrid uses a single registry, plus one or more nodes. You must run an IceGrid node on
each machine on which you are running IceGrid-aware servers.

The job of the registry is to store the names of servers, how to activate them, where each
server is currently running, and so on.

The job of each node is to start servers on the node’s machine, and to monitor their status.

Each node communicates with the registry and informs the registry of status changes
(such as server shutdown).

IceGrid IceGrid Architecture

Copyright © 2005-2010 ZeroC, Inc. 16.6

16-4 IceGrid Architecture

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-4

IceGrid Architecture
A simple IceGrid architecture:

In this example, the machine running the registry does not run servers
or a node.
More commonly, the machine running the registry also runs a node
and servers.
If the machine running the registry also runs a node, you can (but need
not) collocate the registry and node into a single process by setting
IceGrid.Node.CollocateRegistry=1.

Registry Node

Server A

Node

Server B

Server C

Notes:

One machine in an IceGrid domain must run an IceGrid registry. Every machine on
which you want to run servers that are aware of IceGrid, you must run an IceGrid node.

If you also want to run application servers on the machine that runs the registry, you must
run a node on the registry machine as well. In that case, you can collocate the registry and
the node by setting the property IceGrid.Node.CollocateRegistry. If set, the
node automatically provides the registry functionality as well; if not set, you must
manually start separate registry and node processes.

Clients can be located anywhere, either on one of the machines that are part of the
IceGrid domain, or on a completely unrelated machine.

IceGrid Indirect Proxies

Copyright © 2005-2010 ZeroC, Inc. 16.7

16-5 Indirect Proxies

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-5

Indirect Proxies
An indirect proxy has the form
<object-identity>@<adapter-id>

For example:

RootDir@fsadapter

The adapter ID is different from the adapter name that is used by the
server. The adapter ID is configured with the adapter property
<adapter-name>.AdapterId.

The advantage of indirect proxies is that they do not contain
endpoint information. If a server is moved to a different machine
or port, the client need not be updated.

Notes:

Indirect proxies do not contain endpoint information. Instead, the endpoint information is
replaced by a symbolic adapter ID, such as fsadapter. When a client uses an indirect
proxy, the Ice run time transparently contacts the IceGrid registry to find out what
endpoints are used by the server with the specified adapter ID. The registry returns the
endpoints to the client-side run time, which then dispatches the request to the correct
endpoint.

Note that the IceGrid registry gets involved only the first time a client uses an indirect
proxy. Thereafter, all communications between the client and the server are direct, and
not via IceGrid.

The main advantage of indirect proxies is that they allow you to move a server to a
different machine without having to update the client configuration.

IceGrid Client Configuration

Copyright © 2005-2010 ZeroC, Inc. 16.8

16-6 Client Configuration

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-6

Client Configuration
To work with IceGrid, clients require only a single configuration item:

Ice.Default.Locator must be set to the proxy of the IceGrid registry:

Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost \

-p 4061

This property tells the client-side run time where it can obtain endpoint
information for indirect proxies.

IceGrid/Locator is the default identity of the registry’s locator service.

Note that the proxy for the locator cannot be an indirect proxy: the run
time requires one fixed endpoint at which it can resolve addresses.

Notes:

For clients to work with IceGrid, you must define a single property,
Ice.Default.Locator. This property informs the client-side run time where it can
contact the IceGrid location service in order to resolve indirect proxies. (Setting this
property is analogous to configuring the IP address of a DNS server for a machine.)

You must set the value of this property to the proxy for the registry’s location service.
The location service, by default, has the object identity IceGrid/Locator.

IceGrid Registry Endpoints

Copyright © 2005-2010 ZeroC, Inc. 16.9

16-7 Registry Endpoints

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-7

Registry Endpoints
The registry provides three endpoints:

• Client endpoint
Used by the administrative tools and by clients to resolve indirect proxies

• Server endpoint

Used by servers for status updates and registration

• Internal endpoint

Used by nodes and registry replicas

Two additional endpoints are used if IceGrid runs in conjunction with Glacier2.

Registry

Client endpoint
IceGrid.Registry.Client.Endpoints

Server endpoint
IceGrid.Registry.Server.Endpoints

Internal endpoint
IceGrid.Registry.Internal.Endpoints

Notes:

The IceGrid registry provides three separate endpoints for different purposes.

 Client endpoint
This endpoint provides the location service to clients.

 Server endpoint

This endpoint is used by servers to inform the registry of important events, such
as adapter activation and deactivation.

This endpoint is also used by administrative commands to update the registry, for
example, with the details of a new application.

 Internal endpoint

This endpoint is used for internal purposes. In particular, the IceGrid nodes use
this endpoint to communicate with the registry.

Two additional endpoints can be configured for Glacier2 to create sessions and
administrative sessions—see the Ice Manual for details.

IceGrid Registry Configuration

Copyright © 2005-2010 ZeroC, Inc. 16.10

16-8 Registry Configuration

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-8

Registry Configuration
You must set the following properties for the registry to work:

• IceGrid.Registry.Client.Endpoints

• IceGrid.Registry.Server.Endpoints

• IceGrid.Registry.Internal.Endpoints

• IceGrid.Registry.Data

Only the client endpoint requires a port number.

The server and internal endpoints only require a protocol, but not a host
or port.

The IceGrid.Registry.Data property defines the path to a directory in
which the registry places its database files.

Notes:

For the registry to work correctly, you must set the four properties shown above. Note
that it is not necessary to specify a host and port for the server and internal endpoints; for
these, you need to specify only a protocol. (The registry acts as its own location service
for these endpoints, so the port number can be assigned dynamically for these endpoints
by the operating system.) The client endpoint, however, requires a port number.

Note that the client’s Ice.Default.Locator endpoint must match the setting of
IceGrid.Registry.Client.Endpoints.

The IceGrid.Registry.Data property defines the location of a directory in which
the registry stores its database files. (Alternatively, the registry can be configured to use a
SQL database—see the Ice manual for details.)

Here is a minimal configuration for the registry:
IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.Data=registry

IceGrid Node Configuration

Copyright © 2005-2010 ZeroC, Inc. 16.11

16-9 Node Configuration

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-9

Node Configuration
Each node requires at least the following configuration:
• Ice.Default.Locator

Defines the registry’s location service proxy.
• IceGrid.Node.Endpoints

Defines the node’s endpoint for communication with the registry.
• IceGrid.Node.Name

A unique name for the node within the IceGrid domain.
• IceGrid.Node.Data

The location of the configuration files of servers started by the node.

IceGrid.Node.Name must be different for each node!

If you want to collocate the registry, you can set
IceGrid.Node.CollocateRegistry=1 on exactly one of the nodes in
the IceGrid domain.

Notes:

Each node requires four properties to be set:

 Ice.Default.Locator

This property defines the proxy for the registry’s location service. Its value must
match the setting of IceGrid.Registry.Client.Endpoints. This
property must be defined so the node knows where to find its registry.

 IceGrid.Node.Endpoints

This property defines the node’s endpoint for communication with the registry. It
is not necessary to specify a port number.

 IceGrid.Node.Name

Each node has a name that must be unique within the registry. This property
defines the name by which the registry identifies the node.

 IceGrid.Node.Data

This property defines the directory in which the node stores server configuration
files.

A minimal node configuration would be as follows:
Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

IceGrid Node Configuration

Copyright © 2005-2010 ZeroC, Inc. 16.12

IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node1
IceGrid.Node.Data=node

If you set IceGrid.Node.CollocateRegistry=1, the node will also provide
registry functionality. In that case, the node’s configuration must also include the registry
properties discussed in Section 16-8.

IceGrid Starting an IceGrid Node

Copyright © 2005-2010 ZeroC, Inc. 16.13

16-10 Starting an IceGrid Node

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-10

Starting an IceGrid Node
--nowarn: Don’t print security warnings.
--readonly: Start the master registry in read-only mode.

UNIX:
--daemon: Run as UNIX daemon
--noclose: Don’t close open file descriptors for daemon
--nochdir: Don’t change directory to /
--pidfile file: Write process ID into specified file.

Windows:
Use the iceserviceinstall utility to configure it as a Windows service.

Notes:

The icegridnode executable implements the IceGrid node. To successfully start the
node, you must set the properties described in Section 16-9.

The --nowarn option suppresses security warnings. (Refer to Section 16-31.)

The --readonly option runs the master registry in read-only mode.

You can run the node as a UNIX daemon by providing the appropriate options, or
configure it to run as a Windows service using the iceserviceinstall utility.
(Usually, in a production environment, the node will run as a Windows service that is
automatically activated, or as a UNIX daemon that is activated from /etc/rc.)

Note that if you set IceGrid.Node.CollocateRegistry, the node will also
include a registry. Otherwise, you must start a separate registry process.

IceGrid Starting the Registry

Copyright © 2005-2010 ZeroC, Inc. 16.14

16-11 Starting the Registry

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-11

Starting the Registry
The registry command is icegridregistry.

It supports the --nowarn option as well as the same UNIX daemon
options as icegridnode:

--daemon, --noclose, --nochdir, --pidfile file

Use the iceserviceinstall utility to configure it as a Windows
service.

If you run a separate registry, and start nodes before starting the
registry, the nodes will periodically attempt to contact the registry and
establish a connection once the registry is running.

Notes:

The registry command is icegridregistry. The command provides the same
options as icegridnode.

You must run exactly one registry per IceGrid domain. (If you run a collocated registry
within a node, do not start a separate registry process.)

To successfully start the registry, you must set the properties described in Section 16-8.

Each node periodically attempts to contact its registry. Each node will try to contact the
registry indefinitely, so starting a node before starting its registry does not cause any
problems.

IceGrid Server Configuration

Copyright © 2005-2010 ZeroC, Inc. 16.15

16-12 Server Configuration

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-12

Server Configuration
Server configuration is accomplished via XML files.
The XML descriptor at a minimum describes:
• the application name
• the node(s) on which the server(s) run
• for each server:

• a server ID
• the server executable file name

Additional descriptor elements can specify:
• the adapter name and protocol
• activation mode (manual, on-demand, etc.)
• command-line options
• property settings
• environment variables

Notes:

For each application, the registry must know the details of the servers that make up the
application. To configure the registry, you write an XML deployment descriptor that
contains the relevant details. At a minimum, the descriptor must provide an application
name, the names of the nodes on which the application’s servers run, and, for each server,
a server ID and the executable to be run.

Here is a minimal XML descriptor for an application:
<icegrid>
 <application name="filesystem">
 <node name="Node1">
 <server id="fsserver" exe="/usr/bin/myserver"/>
 <adapter name="Lab8" endpoints="tcp"/>
 </node>
 </application>
</icegrid>

The application name must be unique within the registry.

IceGrid Server Configuration

Copyright © 2005-2010 ZeroC, Inc. 16.16

The node name specifies on which node the server is to run; it must match the
corresponding node’s setting of the IceGrid.Node.Name property. An application
can have several node elements. If two node elements have the same name, their contents
are merged.

Each node element typically contains at least one server element. Each server
element must provide a server ID, which uniquely identifies that server within the
registry. Each server element must also provide an executable path. Note that, in
general, you should specify an absolute path name for the executable. (Relative
pathnames are interpreted relative to the node’s working directory.)

The server element performs several important functions:

 It provides the node with information on when and how to start the server
executable.

 It associates object adapters and Ice objects with their server.

 It includes whatever additional configuration that the server requires, such as
environment variables, property settings, and command-line options.

Using the information in the server element, the node automatically generates an Ice
configuration file for the server. When the node starts the server, it appends an
appropriate --Ice.Config option to the server’s command line, instructing the server
to load this configuration file.

IceGrid Server Configuration (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 16.17

16-13 Server Configuration (cont. 1)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-13

Server Configuration (1)
A server element can have several option child elements:
<icegrid>

<application name="filesystem">

<node name="Node1">

<server id="fsserver" exe="/usr/bin/fsserver">

<option>--myoption</option>

<option>myoptarg</option>

<adapter name="Lab8" endpoints="tcp"/>

</server>

</node>

</application>

</icegrid>

Command-line arguments are appended to the executable in the order
specified.

Notes:

16-13-1 Command-Line Arguments
You can pass any number of command-line arguments to a server by adding option
child elements to the server element.

When starting a server, the node adds the arguments to the server’s executable path in the
order in which they are specified.

IceGrid Server Configuration (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 16.18

16-14 Server Configuration (cont. 2)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-14

Server Configuration (2)
You can set properties as part of a server descriptor:

<icegrid>
<application name="filesystem">
<node name="Node1">
<server id="fsserver" exe="/usr/bin/fsserver">
<option>Server</option>
<property name="Ice.ServerIdleTime" value="20"/>
<property name="Ice.GC.Interval" value="60"/>
<adapter name="Lab8" endpoints="tcp"/>

</server>
</node>

</application>
</icegrid>

Property settings are written into a configuration file that is passed to the
server on start-up.

Notes:

16-14-1 Properties
You can set properties for a server by adding property elements to the server
element. The property settings are transferred directly to the configuration file that the
node generates on behalf of the server. (The properties are set in the same order as
specified in the XML descriptor; property elements can precede or follow option
elements.)

You can also use property sets to share settings defined at the application or node level.
(See the Ice manual for details.)

IceGrid Server Configuration (cont. 3)

Copyright © 2005-2010 ZeroC, Inc. 16.19

16-15 Server Configuration (cont. 3)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-15

Server Configuration (3)
You can set environment variables for the server:
<icegrid>

<application name="filesystem">

<node name="Node1">

<server id="fsserver" exe="/opt/app1/bin/server">

<env>LD_LIBRARY_PATH="/opt/app1/lib"</env>

<adapter name="App1" endpoints="tcp"/>

</server>

</node>

</application>

</icegrid>

For UNIX, use Bourne shell syntax for environment variables.

For Windows, use Windows syntax:
<env>PATH=%PATH%;C:/opt/Ice/lib</env>

$PATH (and $${PATH}) substitute the setting of an environment variable.

Notes:

16-15-1 Environment Variables
The env element can appear as a child of the server element and specifies the setting
of an environment variable. The IceGrid node ensures that the corresponding
environment variable setting is passed to the server on start-up.

You can use more than one env element if you need to set several environment variables.

As for the shell, the syntax $VAR substitutes the setting of an environment variable. The
alternative syntax, $${VAR} is useful if you need a delimiter. (Do not use ${VAR}—that
syntax refers to IceGrid variables, not environment variables.)

IceGrid Server Configuration (cont. 4)

Copyright © 2005-2010 ZeroC, Inc. 16.20

16-16 Server Configuration (cont. 4)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-16

Server Configuration (4)
Each server element must have an adapter element for each adapter to
which clients bind indirectly.
<icegrid>

<application name="filesystem">

<node name="Node1">

<server id="fsserver" exe="/usr/bin/fsserver">

<adapter name="Lab8" endpoints="tcp"/>

</server>

</node>

</application>

</icegrid>

The adapter element must minimally specify the adapter name (as used
by the server).

The endpoint usually only specifies a protocol, so the operating system
can assign a port. However, you can specify a port as well, if you want the
server to use a specific port.

Notes:

16-16-1 Object Adapter Configuration
For each adapter that is used by a server (and to which you want clients to be able to bind
indirectly), you must add an adapter element to the server element.

Minimally, the adapter element must specify the object adapter name as used by the
server.

In addition, you can specify endpoints for the adapter. Typically, the endpoints only
specify a protocol, but no port number, so the server uses whatever port is available.
However, you can also specify a port if you want the server to use a specific port.

If you do not specify a protocol, IceGrid uses the default protocol as specified by the
Ice.Default.Protocol property. (If that property is not set, the default protocol is
TCP/IP.)

If you only specify an adapter’s name, but no adapter ID (refer to Section 16-17-1), the
server’s adapter identifier for clients becomes <server-id>.<adapter-name>.
For the above example, the adapter will be known to clients as fsserver.Lab8.
Therefore, given this deployment, the stringified proxy to the server’s root directory
would be
RootDir@fsserver.Lab8

IceGrid Server Configuration (cont. 5)

Copyright © 2005-2010 ZeroC, Inc. 16.21

16-17 Server Configuration (cont. 5)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-17

Server Configuration (5)
If you specify an id attribute, the server’s externally visible
adapter ID becomes that ID:

<icegrid>
<application name="filesystem">
<node name="Node1">
<server id="fsserver" exe="/opt/app1/server">

<adapter name="Lab8" id="fsa" endpoints="tcp"/>
</server>

</node>
</application>

</icegrid>

The client’s indirect proxy now becomes:
RootDir@fsa

Notes:

16-17-1 Server Configuration (cont.)
You can optionally specify an adapter ID with the id attribute. If you do this, the
specified ID becomes the ID that clients must use to bind indirectly to that adapter.

IceGrid Command-Line Administration

Copyright © 2005-2010 ZeroC, Inc. 16.22

16-18 Command-Line Administration

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-18

Command-Line Administration
You can maintain the registry from the command line with
icegridadmin.

The program requires the property Ice.Default.Locator to be
set so it can find the registry.

icegridadmin allows you to:

• Add, update, and remove applications

• Start, stop, and check the status of servers

• Add, remove, and check the status of adapters

• Add, remove, and list well-known objects

Notes:

You populate the registry with the icegridadmin tool.1 This allows you to add,
modify, remove, and list the registry entries, and to check the status of servers.

The tool is interactive and prompts for input similar to the shell. Typing help presents
the available commands.

Note that the tool requires Ice.Default.Locator to be set to the registry’s client
endpoint; without that setting, the tool does not know where to find the registry.

1 1 There is also a GUI version of this tool—see Section 16-28.

IceGrid icegridadmin Application Commands

Copyright © 2005-2010 ZeroC, Inc. 16.23

16-19 icegridadmin Application Commands

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-19

icegridadmin Application Commands

• application add file.xml

Add the application described in file.xml.
• application remove name

Remove the application name.
• application update file.xml

Update an already deployed application with file.xml.
• application describe name

List details of application name.
• application list

List all deployed applications.
• application diff file.xml

Show differences between deployed application descriptor and
file.xml.

Notes:

The application command allows you to configure the registry with new
applications. file.xml is the name of the file containing the application’s deployment
descriptor. For example:
$ icegridadmin --Ice.Default.Locator="IceGrid/Locator:tcp -h 127.0.0.1 -p 4061"

>>> application add filesystem.xml

>>> application list

filesystem

>>> application describe filesystem

application `filesystem'

{

 node `Node1'

 {

 servers

 {

 fsserver

 }

 }

}

>>>

IceGrid icegridadmin Node Commands

Copyright © 2005-2010 ZeroC, Inc. 16.24

16-20 icegridadmin Node Commands

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-20

icegridadmin Node Commands
• node list

List all nodes.
• node describe name

Show information about node name.
• node ping name

Test whether node name is running.

• node show name [stdout | stderr]

Show the node’s stdout and/or stderr output.

• node load name

Show the load of node name.
• node shutdown name

Shut down the node name.

Notes:

The node command allows you to monitor and administer nodes.

The registry maintains a heartbeat with its nodes, so if a node dies, the registry becomes
aware of that within a few seconds. You can use node ping to check whether a node is
responding to registry commands.

Under UNIX, the load of a node is shown as the load average. (The load average is the
number of runnable processes in the process table over the preceding one, five, and
fifteen minutes.) Under Windows, the load of a node is shown as the CPU utilization over
the preceding one, five, and fifteen minutes.

IceGrid icegridadmin Server Commands

Copyright © 2005-2010 ZeroC, Inc. 16.25

16-21 icegridadmin Server Commands

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-21

icegridadmin Server Commands
• server list

List all server IDs.
• server describe id

Show details of server id.
• server enable id

Enable server id.
• server disable id

Disable server id. (A disabled server cannot be started, either on
demand or explicitly.)

• server stdout id message

Write message on server id’s standard output.
• server stderr id message

Write message on server id’s standard error.

Notes:

The server command allows you to check the details of a server. You can set the
Ice.StdOut and Ice.StdErr properties to the name of a file to redirect standard
output and standard error to a file.

Alternatively, on UNIX you can set Ice.UseSyslog to a non-zero value to cause the
run time to send messages to syslogd.

Note that the server stdout and server stderr commands depend on the
server implementing a Process object (Refer to Section 16-25).

IceGrid icegridadmin Server Commands (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 16.26

16-22 icegridadmin Server Commands (cont. 1)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-22

icegridadmin Server Commands (1)
• server state id

Show the state of the server id (running, inactive, enabled or
disabled).

• server pid id

Show the process ID of server id.
• server signal id signal

Send signal signal to server id (UNIX only).
• server start id

Start server id.
• server stop id

Stop server id.
• server remove id

Remove server id.

Notes:

The server command provides a few other options that allow you to control a server.

Note that the server signal command is available only under UNIX. You can
specify the signal either using its number or its symbolic name, such as SIGTERM.

To start a server, the server must be deployed with the registry. If you start the server
using the icegridadmin command, the server will be monitored by IceGrid. However,
if you start the server by hand (from the command line), its status will not be monitored
by IceGrid (but you can still bind to it indirectly, provide that the
Ice.Default.Locator property is set for the server).

IceGrid icegridadmin Server Commands (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 16.27

16-23 icegridadmin Server Commands (cont. 2)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-23

icegridadmin Server Commands (2)
• server show [options] id [stdout | stderr | log]

Print text from the server’s stdout, stderr, or specified log file.
• server properties id

Show the run-time properties of the server id.
• server property id name

Show the setting of the property name for the server id.
• server patch id

Apply updates to the server id via IcePatch2.

Notes:

The show command displays a server’s output, and the properties and property
commands allow you to check the property settings of a server.

The patch command allows you to apply software updates via IcePatch2. (See the Ice
manual for details.)

IceGrid Server Activation and Deactivation

Copyright © 2005-2010 ZeroC, Inc. 16.28

16-24 Server Activation and Deactivation

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-24

Server Activation and Deactivation
The activation attribute of a server element can be set to “manual”,
“on-demand”, “session”, or “always”. (The default is “manual”.)
<server id="fsserver" exe="java" activation="on-demand">

• If set to “manual”, the server must be started using the
icegridadmin server start command.

• If set to “on-demand”, IceGrid transparently activates the server
when a client resolves the first indirect proxy to an object in the
server.

The easiest way to deactivate a server is to set Ice.ServerIdleTime
to a timeout in seconds.

If the server is idle for the specified timeout, its object adapters shut
down and waitForShutdown completes.

Notes:

If you set the activation attribute of a server element to “on-demand”, the server
will be transparently started by IceGrid when a client first resolves an indirect reference
to the server.

If you set Ice.ServerIdleTime, the server’s object adapters shut down once the
server has been idle for the specified amount of time, and the communicator’s
waitForShutdown method returns.

Automatically terminating idle servers is useful to conserve operating system resources,
such as memory, sockets, and file handles. (A server consumes resources even if it is
completely idle.)

IceGrid The Process Object

Copyright © 2005-2010 ZeroC, Inc. 16.29

16-25 The Process Object

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-25

The Process Administrative Facet
module Ice {

interface Process {
idempotent void shutdown();
void writeMessage(string message, int fd);

};

};

IceGrid adds a Process facet to an adapter that runs at the server’s
Ice.Admin.Endpoint (127.0.0.1 by default). The server stop
command calls shutdown on the facet and the implementation of that
operation calls shutdown on the communicator.

This allows the server to shut down when asked to do so by
icegridadmin.

You can specify a different admin endpoint for the server by setting the
Ice.Admin.Endpoints property for the server.

Notes:

The server stop command invokes the shutdown operation on the Process
administrative facet. By default, the endpoint for this facet is 127.0.0.1 (for security
reasons). This endpoint is used only by the IceGrid node. If the loopback interface on the
machine is not secured (that is, the machine has multiple users, not all of whom you can
trust), you should use an SSL endpoint instead of a TCP endpoint.

The server informs IceGrid of the proxy to its Process facet, so icegridadmin can
(via the IceGrid node) shut down a server.

If a server disables the administrative facet (by not setting Ice.Admin.Endpoint),
the node sends a signal to the server in an attempt to shut it down gracefully. Depending
on the environment, this may or may not work; for example, on Windows and for a Java
server, server stop sends a Ctrl-Break to the server’s JVM, which causes the JVM to
dump its threads and stop executing (so the server does not shut down cleanly). If the
server does not terminate within the activation timeout, the node kills the server.

The writeMessage operation writes to the server’s standard output or standard error
and is used by the server stdout and server stderr commands. (These
commands do not work if the server’s Process facet is disabled.)

IceGrid Server Environment

Copyright © 2005-2010 ZeroC, Inc. 16.30

16-26 Server Environment

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-26

Server Environment
When you use application add or application update,
icegridadmin writes a configuration file for a server.

The configuration file is stored in
<node-dir>/servers/<server-id>/config/config

For example:
Node1/servers/fsserver/config/config

This configuration file contains any property settings you specified in
the deployment descriptor.

When IceGrid starts a server, it passes
--Ice.Config=Node1/servers/fsserver/config/config

as an option to the server, so the server gets the correct configuration.

Notes:

When a server is started by IceGrid, it is informed of its configuration via command-line
options: IceGrid appends the --Ice.Config property settings to the command line of
the server.

The remaining configuration (in the form of additional property settings) is passed to the
server in the configuration file that is specified by --Ice.Config. (That configuration
file is written in the node’s data directory every time you use the application add
or application update command.)

IceGrid Server Code Changes

Copyright © 2005-2010 ZeroC, Inc. 16.31

16-27 Server Code Changes

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-27

Server Code Changes

The server’s object adapter obtains its endpoints from the property
settings generated by the IceGrid node.

When creating an object adapter, use:
communicator.createObjectAdapter("<adapter-name>")

without specifying any endpoints.

The adapter name must match the name attribute of the adapter
element in the server’s deployment descriptor.

The adapter will listen on the endpoints specified by the adapter
element, which are transferred to the <adapter-name>.Endpoints
property.

The adapter informs IceGrid of its endpoints so the registry can resolve
indirect proxies.

Notes:

For a server to create indirect references and cooperate with Ice, you need to change the
code that creates the object adapter to not specify an endpoint directly (that is, use
createObjectAdapter instead of createObjectAdapterWithEndpoints).
That way, the adapter retrieves its endpoints from property settings (specifically, the
<adapter-name>.Endpoints property) and reports these endpoints to IceGrid to
facilitate the resolution of indirect proxies.

External to the code, the only other change for a server is that
Ice.Default.Locator must be set (which is passed to the server on the command
line).

IceGrid The Graphical Admin Tool

Copyright © 2005-2010 ZeroC, Inc. 16.32

16-28 The Graphical Admin Tool

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-27

The Graphical Admin Tool

Ice provides a GUI tool that provides most of the functionality of

icegridadmin.

The tool is provided as a stand-alone jar file in the Ice distribution.

To start the tool:
java -jar IceGridGUI.jar

The tool prompts for the value of Ice.Default.Locator so it can find
the registry.

For the GUI tool to work, either:

• set IceGrid.Registry.CryptPasswords

or set one of the following properties to a custom verifier:

• IceGrid.Registry.AdminPermissionsVerifier (for TCP)

• IceGrid.Registry.AdminSSLPermissionsVerifier (for SSL)

Notes:

You can perform most of the functions of icegridadmin with a graphical tool. The
tool provides a tree view of applications, nodes, servers, and adapters, and makes it easy
to change the configuration of an application.

For the GUI to be able to access the registry, the registry must be configured with a
permissions verifier. You do this by setting either:

IceGrid.Registry.AdminPermissionsVerifier or

IceGrid.Registry.AdminSSLPermissionsVerifier, depending on whether
the registry is configured to use TCP or SSL.

The property value must be the proxy to an object that implements the
Glacier2::PermissionsVerifier interface (see Chapter 14). IceGrid provides a
built-in null permissions verifier with the following object identity:

IceGrid/NullPermissionsVerifier

Note that this permissions verifier permits any user name and password, so use it only for
testing!

IceGrid The Graphical Admin Tool

Copyright © 2005-2010 ZeroC, Inc. 16.33

Alternatively, IceGrid provides a built-in permissions verifier that uses the crypt
algorithm. If you want to use this built-in permissions verifier, set
IceGrid.Registry.CryptPasswords to the path name of the password file (as
for Glacier2). If you want to use a password file, you must leave the
AdminPermissionsVerifier and AdminSSLPermissionsVerifier
properties undefined because they take precedence over
IceGrid.Registry.CryptPasswords.

IceGrid Well-Known Proxies

Copyright © 2005-2010 ZeroC, Inc. 16.34

16-29 Well-Known Proxies

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-29

Well-Known Objects
The registry maintains a table of well-known objects. The table stores a
name–proxy pair. You can populate the table

• via the deployment descriptor

• via the icegridadmin or IceGridGUI.jar tools

• programmatically, via the registry’s Slice interface

A proxy for a well-known object consists of only an identity.

Minimally (using the default protocol), a proxy is:
RootDir

You can add an object element as a child of an adapter element to
declare a well-known object:
<adapter name="Lab8" id="fsadapter“ endpoints="tcp">

<object identity="RootDir"/>
</adapter>

RootDir and RootDir@fsadapter are now equivalent.

Notes:

Typically, clients require a number of proxies to “bootstrap” themselves (such as a proxy
to the root directory for the file system application). You can advertise such proxies with
IceGrid as well-known objects. When a client uses a proxy for a well-known object, the
client-side run time first asks the locator to resolve the object’s identity. (In the above
example, this returns the indirect proxy RootDir@fsadapter to the client-side run
time.) If the proxy that is returned is indirect, the client-side run time then resolves that
proxy to the corresponding adapter’s endpoint as usual.

Well-known objects are useful to simplify the configuration of clients. (The only
configuration item that is needed by a client is the Ice.Default.Locator property,
so configuration can be reduced to a single property.)

With icegridadmin, you can use the following commands:2

 object add proxy

Add a well-known object to the registry.

2 IceGridGUI provides equivalent functionality.

IceGrid Well-Known Proxies

Copyright © 2005-2010 ZeroC, Inc. 16.35

 object remove identity

Remove the well-known object with identity from the registry.

 object [expr]

List all well-known objects matching expr. (expr can contain a trailing * as a
wildcard.)

 object describe [expr]

Show details of the well-known objects matching expr.

IceGrid Well-Known Proxies (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 16.36

16-30 Well-Known Proxies (cont. 1)

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-29

Well-Known Proxies (1)
module IceGrid {

interface Admin {
void addObject(Object* obj)

throws ObjectExistsException,
DeploymentException;

void updateObject(Object* obj)
throws ObjectNotRegisteredException,

DeploymentException;
void addObjectWithType(Object* obj, string type)

throws ObjectExistsException,
DeploymentException;

void removeObject(Ice::Identity id)
throws ObjectNotRegisteredException,

DeploymentException;
idempotent ObjectInfoSeq getAllObjectInfos(

string expr);
idempotent ObjectInfo getObjectInfo(Ice::Identity id)

throws ObjectNotRegisteredException;
};

};

Notes:

Programmatically, you can manipulate the well-known proxy table via the
IceGrid::Admin interface.

To obtain a proxy to the IceGrid::Admin interface, a client must first create an
administrative session with the IceGrid registry and call
IceGrid::AdminSession::getAdmin. (See the Ice manual for more
information.)

IceGrid Security Considerations

Copyright © 2005-2010 ZeroC, Inc. 16.37

16-31 Security Considerations

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-31

Security Considerations
Do not permit the server, node, and internal endpoints to
be accessible in hostile environments.

In hostile environments, you must use SSL and appropriate
certificates to secure these endpoints.

• Under UNIX, if you run the node as a user other than
root, servers are started with that user ID.

• If you run the node as root:

• If you do not specify a user attribute for the server
descriptor, the server runs as nobody.

• Otherwise, it runs as the specified user.

Notes:

You need to pay careful attention to the security implications of using IceGrid. One thing
to keep in mind is that anyone who can access the internal interface can run any process
as the user ID that is used to start icegridnode. Similarly, anyone who can access the
server endpoint can substitute a different server for the real one. The node endpoint must
be kept secure as well because it allows a hostile client to manipulate a node and execute
arbitrary processes on the node.

Under UNIX, if the node does not run as root, any servers started by the node run as
that user. Otherwise, if you run the node as root, but do not specify a user attribute
with the server descriptor, the server runs as user nobody. If the node runs as root, you
can use the user attribute of the server descriptor to specify a user ID for a server. (See
the Ice manual for details.)

IceGrid Troubleshooting

Copyright © 2005-2010 ZeroC, Inc. 16.38

16-32 Troubleshooting

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-32

Troubleshooting
You can set various tracing properties to diagnose problems:
IceGrid.Registry.Trace.Adapter=3

IceGrid.Registry.Trace.Node=2

IceGrid.Registry.Trace.Server=1

IceGrid.Registry.Trace.Object=1

IceGrid.Registry.Trace.Locator=2

IceGrid.Node.Trace.Activator=3

IceGrid.Node.Trace.Adapter=3

IceGrid.Node.Trace.Server=3

These properties produce trace messages for the corresponding area of interest.

If you run the registry/node in a window from the command line, trace output is
written to the terminal.

Beware of relative pathnames for executables and files.

Failure to start a server can be related to LD_LIBRARY_PATH.

Check for core files in the node’s working directory.

Notes:

You can set the properties shown above to obtain trace information about IceGrid
activity. These properties are useful especially when a server does not start as expected.

If a client’s indirect proxy does not bind, use icegridadmin adapter list and
object list to verify that adapter name and object identity match. You can also set
Ice.Trace.Locator to trace the activities of the locator on the client side. Running
the client with Ice.Trace.Protocol=1 is also useful because it allows you to see
the operation names and object identities that are used, and to pinpoint exactly which
operation invocation causes the problem.

During debugging, it can be useful to run the registry, a node, the client, and the server
each in a separate window, so you get separate trace from each process. If you can
successfully start a server using server start, but the server fails to activate on-
demand, the problem is likely to be a mismatch of the adapter ID.

IceGrid Other Features

Copyright © 2005-2010 ZeroC, Inc. 16.39

16-33 Other Features

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

16-33

Other Features
IceGrid provides a number of other features (not further covered here):

• Templates

Templates are generic deployment descriptors so you can describe a whole
family of servers with a single descriptor.

• Server allocation

You can reserve a specific number of server instances for allocation and
exclusive use by particular clients.

• Replication

You can replicate objects across a number of servers; if one server is down,
IceGrid transparently chooses a working replica in a different server on
behalf of clients. You can also replicate the IceGrid registry to achieve fault
tolerance.

• Load balancing

For replicated objects, IceGrid can dynamically load balance among the
objects.

Notes:

IceGrid supports a number of other features that are not covered in this course. Please
consult the Ice manual for details.

Ice Pro
Studen

Copy

ogramming wit
nt Workbook

yright © 2005

1

th Java

5-2010 Zero

17 A

oC, Inc.

As
Us

sig
ing

gnm
g Ic

men
ceG

nt 8
Grid

8
d

Assignment 8: Using IceGrid Exercise Overview

Copyright © 2005-2010 ZeroC, Inc. 17.2

17 Assignment 8: Using IceGrid

17-1 Exercise Overview

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-1

Exercise Overview
In this exercise, you will:

• modify the file system application to work with IceGrid.

By the completion of this exercise, you will have gained
experience in how to run IceGrid, deploy a server, and use
indirect proxies in clients to bind indirectly to Ice objects.

Notes:

In this exercise, you will modify the file system application to work with IceGrid.

17-1-1 Exercise Objectives
By the completion of this exercise, you will have gained experience in how to run
IceGrid, deploy a server, and use indirect proxies in clients to bind indirectly to Ice
objects.

Assignment 8: Using IceGrid Using IceGrid

Copyright © 2005-2010 ZeroC, Inc. 17.3

17-2 Using IceGrid

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-2

Using IceGrid
• In this exercise, you will modify the application you

developed in Assignment 6 to use IceGrid.

Notes:

In this exercise, you will modify the application you developed in Assignment 6 to use
IceGrid.

Assignment 8: Using IceGrid What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 17.4

17-3 What You Need to Do

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-3

What You Need to Do
1. Run an IceGrid registry in a window.

2. Run an IceGrid node in a separate window.

3. Create a deployment descriptor for your server in filesystem.xml.

4. Run icegridadmin in a separate window.

5. The server in Server.java does not create an object adapter. Add the
missing code to create the adapter.

6. Start the server using icegridadmin.

7. Verify that you can cleanly stop the server using icegridadmin.

8. The client requires configuration to bind indirect references. Place the
missing configuration for the client into config.client.

9. Modify the client source code to specify an indirect reference for the root
directory that matches the deployment of your server.

10. Run the client with protocol tracing and examine the messages that are
exchanged between the client and the registry.

11. Run the IceGridGUI tool and use it to modify the server’s deployment to
advertise the root directory as a well-known object with the identity “RootDir”.

Notes:

1. Run an IceGrid registry in a window. The registry won’t start without appropriate
configuration. Add the missing configuration entries to config.registry and
start the registry with that configuration file. Your configuration file should enable all
the registry tracing properties, so you can see what the registry is doing.

2. Run an IceGrid node in a separate window. Again, the node will not start without
appropriate configuration. Place the missing configuration entries into
config.node and start the node with that configuration file. Your configuration
file should enable all node tracing properties, so you can see what the node is doing.

3. Create a deployment descriptor for your server in filesystem.xml. The server
should be registered for automatic activation and exit if it is idle for more than 20
seconds. Allow the OS to assign a port to the server.

4. Run icegridadmin in a separate window. Place the configuration necessary for
icegridadmin into config.admin and start the tool with that configuration
file. Use icegridadmin to add the deployment descriptor you created to the
registry.

5. The server in Server.java does not create an object adapter. Add the missing
code to create the adapter.

Assignment 8: Using IceGrid What You Need to Do

Copyright © 2005-2010 ZeroC, Inc. 17.5

6. Start the server using icegridadmin. If everything works, the server should start
up and, after 20 seconds, exit again. If your server does not start, examine the trace
from the node to work out what is going wrong. (Do not proceed to the next step until
you can successfully start the server.)

7. Verify that you can cleanly stop the server using icegridadmin.

8. The client requires configuration to bind indirect references. Place the missing
configuration for the client into config.client.

9. Modify the client source code to specify an indirect reference for the root directory
that matches the deployment of your server. Run the client and verify that running the
client activates the server and that the client can successfully list the contents of the
root directory.

10. Run the client with protocol tracing and examine the messages that are exchanged
between the client and the registry.

11. Run the IceGridGUI tool and use it to modify the server’s deployment to advertise
the root directory as a well-known object with the identity “RootDir”. Modify the
client source code to use this well-known identity and run the client to verify that it
can bind to the server using a well-known proxy with this identity.

Assignment 8: Using IceGrid Registry Configuration

Copyright © 2005-2010 ZeroC, Inc. 17.6

17-4 Registry Configuration

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-4

Registry Configuration
IceGrid.Registry.Client.Endpoints=tcp -p 4061

IceGrid.Registry.Server.Endpoints=tcp

IceGrid.Registry.Internal.Endpoints=tcp

IceGrid.Registry.Data=registry

IceGrid.Registry.AdminPermissionsVerifier=IceGrid/Nu
llPermissionsVerifier

IceGrid.Registry.Trace.Locator=2

IceGrid.Registry.Trace.Adapter=3

IceGrid.Registry.Trace.Node=2

IceGrid.Registry.Trace.Server=1

IceGrid.Registry.Trace.Object=1

Notes:

IceGrid.Registry.Client.Endpoints=tcp -p 4061

IceGrid.Registry.Server.Endpoints=tcp

IceGrid.Registry.Internal.Endpoints=tcp

IceGrid.Registry.Data=registry

IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsVerifie
r

IceGrid.Registry.Trace.Locator=2
IceGrid.Registry.Trace.Adapter=3

IceGrid.Registry.Trace.Node=2

IceGrid.Registry.Trace.Server=1

IceGrid.Registry.Trace.Object=1

Assignment 8: Using IceGrid Node Configuration

Copyright © 2005-2010 ZeroC, Inc. 17.7

17-5 Node Configuration

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-5

Node Configuration

Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

IceGrid.Node.Endpoints=tcp

IceGrid.Node.Name=Node

IceGrid.Node.Data=node

IceGrid.Node.Trace.Activator=3

IceGrid.Node.Trace.Adapter=3

IceGrid.Node.Trace.Server=3

Notes:

Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

IceGrid.Node.Endpoints=tcp

IceGrid.Node.Name=Node

IceGrid.Node.Data=node

IceGrid.Node.Trace.Activator=3

IceGrid.Node.Trace.Adapter=3

IceGrid.Node.Trace.Server=3

Assignment 8: Using IceGrid Deployment Descriptor

Copyright © 2005-2010 ZeroC, Inc. 17.8

17-6 Deployment Descriptor

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-6

Deployment Descriptor
<icegrid>

<application name=“filesystem">

<node name="Node">

<server id="fsserver" exe="java" activation="on-demand">

<adapter name="Lab8" id="fsadapter" endpoints="tcp">

</adapter>

<property name="Ice.ServerIdleTime" value="20"/>

<option>Server</option>

</server>

</node>

</application>

</icegrid>

Notes:

Assignment 8: Using IceGrid Admin Configuration

Copyright © 2005-2010 ZeroC, Inc. 17.9

17-7 Admin Configuration

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-7

Admin Configuration
• Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

Notes:

Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

Assignment 8: Using IceGrid Server Source Modification

Copyright © 2005-2010 ZeroC, Inc. 17.10

17-8 Server Source Modification

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-8

Server Source Modification
The server must call createObjectAdapter (instead of
createObjectAdapterWithEndpoints) to create the adapter:

Ice.ObjectAdapter adapter =
communicator().createObjectAdapter("Lab8");

Notes:

The server must call createObjectAdapter (instead of
createObjectAdapterWithEndpoints) to create the adapter:

Ice.ObjectAdapter adapter = communicator().createObjectAdapter("Lab8");

Assignment 8: Using IceGrid Server Source Modification

Copyright © 2005-2010 ZeroC, Inc. 17.11

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-9

Client Configuration
• Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

Notes:

Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

Assignment 8: Using IceGrid Client Modification

Copyright © 2005-2010 ZeroC, Inc. 17.12

17-9 Client Modification

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

17-10

Client Modification
• For step 9, the client needs to use the proxy:

RootDir@fsadapter.

• For step 11, the proxy is:
RootDir.

Notes:

For step 9, the client needs to use the proxy RootDir@fsadapter.

For step 11, the proxy is RootDir.

Ice Pr
Stude

Copyr

rogramming w
ent Workbook

right © 2005-2

with Java
k

2010 ZeroC,

18

Inc.

8 T
Tim

The
me

 Ice
in

e R
De

Run
etai

n
l

The Ice Run Time in Detail Lesson Overview

Copyright © 2005-2010 ZeroC, Inc. 18.2

18 The Ice Run Time in Detail

18-1 Lesson Overview

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-1

Lesson Overview
• This lesson:

– takes closer look at the Ice run time.

– explains some advanced implementation techniques
that allow you to take precise control of the
performance–footprint trade-off for a server.

• By the completion of this chapter, you will know how to
build realistic server applications that can scale to
millions of objects.

Notes:

This lesson takes a closer look at the Ice run time. In particular, it explains some advanced
implementation techniques that allow you to take precise control of the performance–
footprint tradeoff for a server.

18-1-1 Lesson Objectives
By the completion of this lesson, you will know how to build realistic server applications
that can scale to millions of objects.

The Ice Run Time in Detail The Ice::Communicator Interface

Copyright © 2005-2010 ZeroC, Inc. 18.3

18-2 The Ice::Communicator Interface

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-2

The Ice::Communicator Interface
Ice::Communicator is the main handle to the Ice run time.

The communicator is associated with a number of resources:

• Client- and server-side thread pool

• Configuration properties

• Object factories to instantiate Slice classes

• A logger object to redirect warning and error messages

• A statistics objects to collect statistics on traffic volumes

• A default router (used by Glacier2)

• A default locator (used by IceGrid)

• A plug-in manager to load plug-ins (such as IceSSL)

• One or more object adapters

You can have more than one communicator in a process (for example, to
use different configuration properties with each).

Notes:

Ice::Communicator is a local interface that represents the main handle to the Ice run
time. Before you can do anything in your code with Ice, you must obtain a handle to a
communicator.

A communicator is associated with a number of run-time resources:

 Client-side thread pool

The client-side thread pool is responsible for processing messages received on
outgoing connections. Threads in this pool also dispatch callbacks for
asynchronous method invocations, and handle incoming requests from bi-
directional connections.

 Server-side thread pool

Threads in this pool accept incoming connections and handle requests from
clients.

 Configuration properties

Various aspects of the Ice run time can be configured via properties. Each
communicator has its own set of such configuration properties (see Chapter 8).

 Object factories

The Ice Run Time in Detail The Ice::Communicator Interface

Copyright © 2005-2010 ZeroC, Inc. 18.4

In order to instantiate classes that are derived from known base types, the
communicator maintains a set of object factories that can instantiate the classes on
behalf of the Ice run time.

 Logger object

A logger object implements the Ice::Logger interface and determines how log
messages that are produced by the Ice run time are handled. (See the Ice manual
for details.)

 Statistics object

A statistics object implements the Ice::Stats interface and is informed about
the amount of traffic (bytes sent and received) that is handled by a communicator.
(See the Ice manual for details.)

 Default router

A router implements the Ice::Router interface. Glacier2 is a router that
implements the firewall functionality of Ice (see Chapter 14).

 Default locator

A locator is an object that resolves an object identity to a proxy. Locator objects
are used to implement location services; IceGrid is an example of a service that
implements a locator (see Chapter 16).

 Plug-in manager

Plug-ins are objects that add features to a communicator. For example, IceSSL is
implemented as a plug-in. Each communicator has a plug-in manager that
implements the Ice::PluginManager interface and provides access to the set
of plug-ins for a communicator.

 Object adapters

Object adapters dispatch incoming requests and take care of passing each request
to the correct servant.

 Administrative facility

Ice applications often require remote administration, such as when an IceGrid
node needs to gracefully deactivate a running server. The Ice run time provides an
extensible, centralized facility for exporting administrative functionality. This
facility consists of an object adapter named Ice.Admin, an Ice object activated
on this adapter, and configuration properties that enable the facility and specify its
features.

 Implicit context

All proxy invocations support an optional trailing argument of type
Ice::Context (which is a map of name-value strings). Applications do not
typically use this parameter, but for those that do use it, having to pass the same
context explicitly in every proxy invocation can be cumbersome. The
communicator allows you to establish an implicit context that is sent with all
invocations, provided that you do not supply an explicit context with the call.

You can use more than one communicator in a process. Each communicator maintains a
separate set of its associated run-time resources, such as thread pools and network
connections. In some circumstances it may be necessary to create more than one
communicator, for example, in order to use different configuration properties for each. As
a general rule, however, a single communicator is sufficient for most applications.

The Ice Run Time in Detail The Ice::Communicator Interface (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.5

18-3 The Ice::Communicator Interface (cont. 1)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-3

The Ice::Communicator Interface (1)
module Ice {

local interface Communicator {
string proxyToString(Object* obj);
Object* stringToProxy(string str);

ObjectAdapter createObjectAdapter(string name);
ObjectAdapter createObjectAdapterWithEndpoints(

string name,
string endpoints);

void shutdown();
void waitForShutdown();
void destroy();
// ...

};
// ...

};

Notes:

The communicator offers a number of commonly-used operations:

 proxyToString
stringToProxy

These operations allow you to convert a proxy into its stringified representation and vice
versa.

Instead of calling proxyToString on the communicator, you can also use the
ice_toString operation on a proxy to stringify it. However, you can only stringify non-
null proxies that way—to stringify a null proxy, you must use proxyToString. (The
stringified representation of a null proxy is the empty string.)

 createObjectAdapter
createObjectAdapterWithEndpoints

The Ice Run Time in Detail The Ice::Communicator Interface (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.6

These operations create a new object adapter. Each object adapter is associated with one
or more transport endpoints. Typically, an object adapter has a single transport endpoint.
However, an object adapter can also offer multiple endpoints. If so, these endpoints each
lead to the same set of objects and represent alternative means of accessing these objects.
This is useful, for example, if a server is behind a firewall but must offer access to its
objects to both internal and external clients; by binding the adapter to both the internal and
external interfaces, the objects implemented in the server can be accessed via either
interface.

Whereas createObjectAdapter determines which endpoints to bind itself to from
configuration information, createObjectAdapterWithEndpoints allows you to
specify the transport endpoints for the new adapter. Typically, you should use
createObjectAdapter in preference to createObjectAdapterWithEndpoints.
Doing so keeps transport-specific information, such as host names and port numbers, out
of the source code and allows you to reconfigure the application by changing a property.

 shutdown

This operation shuts down the server side of the Ice run time:

o Dispatched operations that are in progress at the time shutdown is called are
allowed to complete normally. shutdown does not wait for these operations
to complete; when shutdown returns, you know that no new incoming
requests will be dispatched, but operations that were already in progress at the
time you called shutdown may still be running. You can wait for still-
executing operations to complete by calling waitForShutdown.

o Operation invocations that arrive after the server has called shutdown either
fail with a ConnectFailedException or are transparently redirected to a
new instance of the server (see Chapter 16).

Note that shutdown initiates deactivation of all object adapters associated with the
communicator, so attempts to use an adapter once shutdown has completed raise an
ObjectAdapterDeactivatedException.

 waitForShutdown

This operation suspends the calling thread until the communicator has shut down (that
is, until no more operations are executing in the server). This allows you to wait until
the server is idle before you destroy the communicator.

If you call destroy without calling shutdown, the call waits for all dispatched
operations to complete before it returns (that is, the implementation of destroy
implicitly calls shutdown followed by waitForShutdown). shutdown (and, therefore,
destroy) deactivate all object adapters that are associated with the communicator.

One the client side, calling destroy while outgoing invocations are still pending causes
those invocations to terminate immediately with a
CommunicatorDestroyedException.

The Ice Run Time in Detail Creating a Communicator

Copyright © 2005-2010 ZeroC, Inc. 18.7

18-4 Creating a Communicator

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-4

Creating a Communicator
final class InitializationData implements Cloneable
{

public java.lang.Object clone();
public Properties properties;
public Logger logger;
public Stats stats;
public ThreadNotification threadHook;
public ClassLoader classLoader;
public Dispatcher dispatcher;

}
static Communicator initialize();
static Communicator initialize(String[] args);
static Communicator initialize(StringSeqHolder ah);
static Communicator initialize(InitializationData id);
static Communicator initialize(String[] args,

InitializationData id);
static Communicator initialize(StringSeqHolder ah,

InitializationData id);

Notes:

The various initialization functions create a new communicator. Note that the methods are
overloaded. The alternative versions accept a StringSeqHolder instead of an array and
remove any Ice-specific options from the passed sequence so, once the initialization
function returns, the sequence contains only application-specific options. This saves you
having to write code that skips over Ice-related options when parsing the command line.

The InitializationData parameter allows you to control various aspects of the
communicator, such as its property set. (If you want to prevent command-line options
from overriding property settings, you can pass a dummy argument vector.)

The Ice Run Time in Detail Object Adapters

Copyright © 2005-2010 ZeroC, Inc. 18.8

18-5 Object Adapters

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-5

Object Adapters
Object adapters link the server-side run time to the server-side
application code.

Each server has at least one object adapter.

Each object adapter provides one or more transport endpoints at
which it listens for incoming requests.

Each object adapter provides an Active Servant Map to dispatch
incoming requests.

Operations that manipulate the ASM:
Object* add(Object servant, Identity id)

Object* addWithUUID(Object servant)

Object remove(Identity id)

idempotent Object find(Identity id)

Notes:

As we saw in Chapter 1, object adapters provide the link between the Ice run time and the
server-side application code. The main responsibilities of an object adapter are to provide
one or more transport endpoints to which clients can send requests, and to maintain the
mapping between object identities and servants, that is, to maintain the ASM.

You can add an entry to the ASM by calling add or addWithUUID. (The former requires
you to provide an object identity for the servant, whereas the latter generates a unique
object identity for each servant that is added.)

The remove operation removes the specified entry from the ASM, and the find
operation returns the servant for a given identity (or null if no such entry exists).

The Ice Run Time in Detail Servant Locators

Copyright © 2005-2010 ZeroC, Inc. 18.9

18-6 Servant Locators

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-6

Servant Locators
By default, if the identity for an incoming request cannot be found in the

ASM, the run time returns ObjectNotExistException to the client.

You can register one or more servant locators with an object adapter.

The job of a servant locator is to locate or create a servant for a
request.
local interface ServantLocator

{
Object locate(Current curr,

out LocalObject cookie);
void finished(Current curr,

Object servant,
LocalObject cookie);

void deactivate(string category);

};

Notes:

A servant locator is an object that you register with an object adapter. If an incoming
request fails to find a servant in the ASM, instead of throwing
ObjectNotExistException, the adapter calls the locator’s locate operation. If
locate returns a servant, the request is dispatched to the returned servant and, as soon as
the request completes, the adapter calls finished. The servant that is returned by
locate is not added to the ASM. This means that the association between the returned
servant and the incoming request is valid only for the duration of a single request.

The finished operation allows you to perform clean-up work once the request completes.
For example, inside finished, you can deallocate a resource that was allocated by
locate.

The cookie out-parameter of locate is passed to the corresponding call to finished.
This allows you to pass state between locate and finished.

The Ice Run Time in Detail Servant Locators

Copyright © 2005-2010 ZeroC, Inc. 18.10

If locate cannot procure a servant (typically, because the object identity does not
correspond to an existing Ice object), it can return null. A null return value indicates to the
object adapter that no servant could be found; in response, the object adapter marshals an
ObjectNotExistException back to the client. In addition, if locate throws an
exception, that exception is passed back to the client. (However, remember that
exceptions other than ObjectNotExistException, FacetNotExistException, and
OperationNotExistException appear as UnknownLocalException in the client.)

The Ice run time calls deactivate when a servant locator is no longer needed, that is,
when you destroy the object adapter or destroy the adapter’s communicator. deactivate
allows you to perform final clean-up operations (such as closing a database connection).

The Ice Run Time in Detail Threading Guarantees for Servant Locators

Copyright © 2005-2010 ZeroC, Inc. 18.11

18-7 Threading Guarantees for Servant Locators

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-7

Threading Guarantees for Servant Locator

Guarantees provided by the Ice run time:
• Every call to locate is balanced by a call to finished.
• locate, the servant operation, and finished are called by the

same thread. (When using AMD, finished may be called by a
different thread.)

• No call to locate or finished can arrive after deactivate is

called, and deactivate is not called concurrently with locate
or finished.

Note that:
• Multiple calls to locate can proceed concurrently.
• Multiple calls to finished can proceed concurrently.
• locate and finished can proceed concurrently.
Concurrency can involve the same object ID!

Notes:

The Ice run time guarantees that every call to locate is balanced by a corresponding call
to finished. (Naturally, this is true only if locate indeed returns a servant; if locate
returns null or throws an exception, finished is not called.)

locate, the operation, and finished are guaranteed to be called by the same thread.
This allows you to, for example, acquire a lock in locate and release that lock in
finished. (If you are using Asynchronous Method Dispatch (AMD), this guarantee does
not hold: finished may be called by a different thread, but locate and the operation
are still guaranteed to be called by the same thread.)

deactivate is guaranteed to be the last call on a servant locator, and does not start until
all outstanding calls to finished have completed.

Beyond that, no guarantees are provided. In particular, it is possible for multiple calls to
locate and finished to proceed concurrently (for the same or for different object
identities).

The Ice Run Time in Detail Servant Locator Registration

Copyright © 2005-2010 ZeroC, Inc. 18.12

18-8 Servant Locator Registration

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-8

Servant Locator Registration
local interface ObjectAdapter {

void addServantLocator(ServantLocator locator,
string category);

ServantLocator findServantLocator(string category);

// ...
};

Note that a servant locator is registered for a specific category.
• If the target identity of an incoming request has a matching category,

the run time calls the corresponding servant locator.
• Otherwise, if you have servant locator with an empty category, the

run time calls that servant locator (known as the default locator).

Notes:

Recall the definition of an object identity:
struct Identity {

 string name;

 string category;

};

As you can see, each object identity consists of two fields, the name and the category. A
servant locator is registered for a specific category. For an incoming request to trigger a
locator’s locate operation, the category in the incoming request must match the servant
locator’s category.

However, you can also register a servant locator with the empty category. That locator is
known as the default servant locator, and its locate operation is called for all requests
that either have an empty category, or have a non-empty category for which no specific
servant locator is registered.

The Ice Run Time in Detail Call Dispatch Rules

Copyright © 2005-2010 ZeroC, Inc. 18.13

18-9 Call Dispatch Rules

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-9

Call Dispatch Rules
1. Look for the identity in the ASM. If the ASM contains an entry,

dispatch the request. Finished.
2. If the category of the request is non-empty, look for a matching

servant locator.
• If a matching locator is found, call its locate operation. If locate

returns a servant, dispatch the request; otherwise, throw
ObjectNotExistException. Finished.

• If no matching locator is found, continue with Step 3.
3. Look for a default servant locator.

• If a default servant locator is found, call its locate operation. If
locate returns a servant, dispatch the request; otherwise, throw
ObjectNotExistException. Finished.

• If no default locator is found, continue with Step 4.
4. Raise ObjectNotExistException in the client.

Notes:

The above slide summarizes the rules that are used to dispatch calls. The run time first
looks for an entry in the ASM and, if one exists, dispatches the call to the corresponding
servant.

Otherwise, if the request has a non-empty category and a servant locator is registered
for that category, that servant locator’s locate operation is called and determines the
outcome of the request.

Otherwise, if a default servant locator is registered and the request category is empty or
the category is non-empty but no specific servant locator is registered for that category,
the default locator’s locate operation is called and determines the outcome of the
request.

Otherwise, no servant could be found, either in the ASM or by a servant locator, so the
run time raises ObjectNotExistException in the client.

The Ice Run Time in Detail Implementing Servant Locators

Copyright © 2005-2010 ZeroC, Inc. 18.14

18-10 Implementing Servant Locators

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-10

Implementing Servant Locators
Each servant locator must be derived from the Ice::ServantLocator
base class:
public class MyServantLocator implements Ice.ServantLocator

{

public Ice.Object

locate(Ice.Current c, Ice.LocalObjectHolder cookie);

public void

finished(Ice.Current c,

Ice.Object servant,

Object cookie);

public void

deactivate(String category);

}

Notes:

To implement a servant locator, you must define a class that implements
Ice.ServantLocator and supply implementations of the locate, finished, and
deactivate methods. (Frequently, the finished and deactivate methods are
empty.)

The Ice Run Time in Detail Implementing locate

Copyright © 2005-2010 ZeroC, Inc. 18.15

18-11 Implementing locate

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-11

Implementing locate
public Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{

MyServantDetails d = null;
try {

d = DB_lookup(c.id.name);
} catch (DB_error e)

return null;
}
return new MyInterfaceI(d);

}

This implementation locates the state for a servant in a database.

Note that, for each request, a new servant is created.

• Depending on the relative costs of operations and initialization, this
may be inefficient.

• Without interlocks, this can result in multiple servants for the same
Ice object, if requests arrive concurrently.

Notes:

The above code shows a very simple implementation of a servant locator for an interface
MyInterface.

We assume that the state for the servant is stored in a database. DB_lookup is a database
lookup function to retrieve that state. Note that we use the name field of the object identity
as the lookup key.1 If DB_lookup cannot find a servant, locate returns null, which
raises ObjectNotExistException in the client. Otherwise, the code instantiates a new
servant of type MyInterfaceI (passing the servant state to the constructor) and returns
the servant.

This implementation, in which a new servant is instantiated for each and every request, is
probably too simplistic for a real application. The potential exists that concurrent
invocations by clients for the same object identity will result in more than one instantiated
servant in memory for the same Ice object. This may be OK (depending on exactly what
the operations on the servant do), or it may spell disaster. If you want to avoid creating
multiple servants for the same Ice object, you must keep a list of existing servants and do
interlocked lookups into that list in locate.

1 This is a common pattern when making objects persistent: the identity serves as the database key for the
remainder of the servant state.

The Ice Run Time in Detail Implementing locate

Copyright © 2005-2010 ZeroC, Inc. 18.16

However, the implementation illustrates the basic principle: the job of locate is to come
up with a servant for a request. How it does that is up to each application. (For example,
locate may return an already-instantiated servant instead of creating a new one.)

The Ice Run Time in Detail Information Provided to locate

Copyright © 2005-2010 ZeroC, Inc. 18.17

18-12 Information Provided to locate

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-12

Information Provided to locate
locate is passed the Ice::Current object for the incoming
request.
Ice::Current contains the identity for the incoming request,
and the operation name.
Typically, this is all the information you need to locate the
correct servant for a request.
Note that locate must usually instantiate a servant, but the
type of the servant’s interface is not part of the Current
object.
If you have locators for servants with different interfaces,
you must register a separate locator for each interface
type.
The category can be any identifier you choose; you can
use the type ID of the servant’s interface, or any other
suitable identifier.

Notes:

If you have more than one type of object, it is no longer implicit as to which type of
servant should be instantiated by locate. This is the purpose of having category-specific
servant locators: for each type of object, you register a different servant locator, each with
its own category identifier.

By using corresponding category values when you create proxies, this ensures that each
type of object is serviced by its own servant locator. For example:
public class DirectoryLocator implements Ice.ServantLocator

{

 // ...

}

public class FileLocator implements Ice.ServantLocator

{

 // ...

}

// ...

adapter.addServantLocator(new DirectoryLocator(), "d");

adapter.addServantLocator(new FileLocator(), "f");

The Ice Run Time in Detail Information Provided to locate

Copyright © 2005-2010 ZeroC, Inc. 18.18

In this example, we used the letters d and f as the category identifiers. However, you can
use any identifier you like—one obvious choice is to use the type ID of the corresponding
interface.

The Ice Run Time in Detail Lazy Initialization

Copyright © 2005-2010 ZeroC, Inc. 18.19

18-13 Lazy Initialization

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-13

Lazy Initialization
Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{

MyServantDetails d = null;
try {

d = DB_lookup(c.id.name);
} catch (DB_error e)

return null;
}
myInterfaceI servant = new MyInterfaceI(d);
try {

c.adapter.add(servant, c.id);
} catch (Ice.AlreadyRegisteredException ex)

return c.adapter.find(c.id);
}
return servant;

}

Notes:

For simple servers, a common strategy is to, on start-up, instantiate one servant for each
Ice object, add each servant to the ASM, and then activate the object adapter. This
strategy is perfectly viable, provided that the server has sufficient memory to keep a
servant for each Ice object permanently in memory, and that the time required to initialize
all the servants on start-up is acceptable.

One way to mitigate this issue is to use lazy initialization: instead of instantiating all
servants upfront, you can instantiate them on an as-needed basis using a servant locator,
as shown above. With this strategy, the ASM is initially empty, and servants are created
on demand and added to the ASM as clients access the corresponding Ice objects.

The main advantages of this approach are:

 Initialization cost is spread out over many invocations instead of being incurred all at
once during server start-up.

 Servants are instantiated only for those Ice objects that are actually accessed by
clients.

The Ice Run Time in Detail Lazy Initialization

Copyright © 2005-2010 ZeroC, Inc. 18.20

In general, incremental initialization is beneficial if instantiating servants during start-up
is too slow. The memory savings can be worthwhile as well but, as a rule, are realized
only for comparatively short-lived servers: for long-running servers, chances are that,
sooner or later, every Ice object will be accessed by some client or another; in that case,
there are no memory savings because we end up with an instantiated servant for every Ice
object regardless.

The Ice Run Time in Detail Creating Proxies

Copyright © 2005-2010 ZeroC, Inc. 18.21

18-14 Creating Proxies

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-14

Creating Proxies
You can create a proxy for an Ice object without
instantiating a servant for that object:
local interface ObjectAdapter {

Object* createProxy(Identity id);
// ...

};

This is more efficient than instantiating a servant and
adding it to the ASM in order to obtain its proxy.
createProxy is particularly useful for list operations that
return a large number of proxies to clients.
When used in combination with servant locators, this
avoids having to instantiate a servant for each Ice object
returned in a list.

Notes:

For the previous technique to be effective, it must be possible to pass a proxy for an Ice
object to clients without having to first instantiate a servant in order to obtain the proxy.

The createProxy operation on the object adapter allows you to do this. It creates a
proxy for an Ice object given its identity, so there is no need to first instantiate a servant
and to add it to the ASM.

createProxy is particularly useful for list operations that return large numbers of
proxies. Instead of instantiating a servant for each Ice object in the returned list, you can
create the proxies for the Ice objects to be returned with createProxy and rely on a
servant locator to instantiate those servants only if a client actually uses them.

createProxy takes the endpoint information that is part of every proxy from the object
adapter’s configuration, that is, createProxy automatically creates a proxy with the
correct binding information, regardless of whether the adapter uses direct or indirect
binding (see Chapter 16).2

2 Note that the adapter also provides operations to specifically create direct and indirect proxies. See the Ice
manual for details.

The Ice Run Time in Detail Default Servants

Copyright © 2005-2010 ZeroC, Inc. 18.22

18-15 Default Servants

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-15

Default Servants
A servant that implements many different Ice objects simultaneously is
called a default servant.

Default servants are useful for servers that act as a front end to backend
storage, such as servers that sit in front of a database and present
database records as Ice objects.

Ice provides an API similar to servant locators that makes it easy to
register your default servants.

Each operation implementation uses the object identity for the request to
determine which servant state to operate on.

Default servants allow unlimited scalability with very small memory
footprint.

Notes:

A common requirement is to make already existing data available as Ice objects to clients.
Usually, the data is present in a database, or can be retrieved via a custom API from an
already-existing application. In such cases, the Ice server merely acts as a front end to the
existing data, as a facade.

A good way to implement such servers is to use default servants. A default servant is a
regular servant that you register for a specific category with the object adapter, much like
servant locators and using a very similar API. (In fact, another way to implement a default
servant is using a servant locator that unconditionally returns the same single servant from
its locate operation. Prior to Ice 3.4, this was the only way to implement a default
servant, but the use case was so common that an explicit API was added.)

Default servants differ from servant locators in that there is no locate hook in which the
application is given an opportunity to examine the Current object and select a servant
to dispatch the current request. Rather, the object adapter dispatches all requests for a
category to its registered default servant unless a servant is found in the ASM matching
the identity of the current request. The implication here is that the association between an
identity category and an interface type becomes critical: if you have several interface
types, you need one default servant for each type.

The Ice Run Time in Detail Default Servants

Copyright © 2005-2010 ZeroC, Inc. 18.23

Each operation implementation in a default servant uses the object identity that is
delivered to it in the Current object for the request to determine the target object of the
request, and to adjust its behavior accordingly.

Registering default servants is as easy as registering servant locators. Assuming that we
have default servants for directories and files, we can register them with the object adapter
as follows:
_adapter.addDefaultServant(new DirectoryI(), "d");
_adapter.addDefaultServant(new FileI(), "f");

Again, for this example, we have used d and f as the category to distinguish directories
and files, but we could have used other identifiers, such as Filesystem::Directory
and Filesystem::File instead.

The Ice Run Time in Detail Default Servants (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.24

18-16 Default Servants (cont. 1)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-16

Default Servants (1)
With a default servant, the implementation of each operation:

• uses the Current object to get the object identity

• uses the name member of the identity to locate the state of the Ice
object (for example, by using it as the key of a database table). If
no state can be found for the identity, the operation throws
ObjectNotExistException.

• Implements the operation to operate on the retrieved state.

This makes the server completely stateless. Each operation
retrieves the state, operates on it, and forgets the state again.

Notes:

Here is a pseudo-code implementation of a write operation in the default servant for a
file:
void

write(String[] l, Ice.Current c)

{

 DBRecord file = null;

 // Locate the file using its identity.

 //

 try {

 file = DB_getRecord(c.id.name);

 } catch (DB_error ex)

 throw new Ice.ObjectNotExistException();

 }

 // Update the file.

 //

 updateRecord(file, l); // Helper function to update file

The Ice Run Time in Detail Default Servants (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.25

}

Exactly how the operation goes about implementing the correct functionality is irrelevant.
The important point is that the object identity is used a key to retrieve the servant state, so
the same single operation can take on different personas depending on which Ice object is
the target of the request.

Note that this also allows you to implement Ice objects as lumps of data; for example, the
server could keep a map in memory that, for each identity, stores a structure with the
servant state. Alternatively, the operation implementation could access a physical
hardware device in order to implement the operation, or use a network protocol such as
SNMP to access the state of a device in an internal network.

The Ice Run Time in Detail Default Servants (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 18.26

18-17 Default Servants (cont. 2)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-17

Default Servants (2)
If you use default servants, you should override the ice_ping operation
on the skeleton to do the right thing.
The inherited default implementation always succeeds. However, if you
use a default servant, a client may ping an Ice object that truly does not
exist.
void
ice_ping(Ice.Current c)
{

try {
DB_lookup(c.id.name);

} catch (DB_error ex)
throw new Ice.ObjectNotExistException() ;

}
}

You need to override ice_ping only if clients actually use it (but it is
good practice to do so).

Notes:

One thing to keep in mind when using default servants is that the default implementation
of ice_ping that the servant inherits from its skeleton always succeeds. If you use the
ASM, this is just what is needed but, for default servants, this makes it possible for a
client to successfully call ice_ping on a destroyed object.

To ensure that ice_ping works as intended, you should override it. The implementation
must check whether the identity for the request denotes an existing object and, if not,
throw ObjectNotExistException.

The Ice Run Time in Detail Hybrid Approaches and Caching

Copyright © 2005-2010 ZeroC, Inc. 18.27

18-18 Hybrid Approaches and Caching

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-18

Hybrid Approaches and Caching
You can combine the ASM and a default servant:

• Put performance-critical servants that are accessed frequently into the
ASM.

The implementation of these servants should cache all servant state in
memory to get good performance.

• Use a default servant for less frequently-accessed servants.

The implementation of these servants retrieves state on demand from
back-end storage, to keep memory consumption low.

This approach is useful if the access patterns to servants are known in

advance and static.

Notes:

Depending on the nature of your application, you may be able to steer a middle path that
provides better performance while keeping memory requirements low: if your application
has a number of frequently-accessed objects that are performance-critical, you can add
servants for those objects to the ASM. If you store the state of these objects in data
members inside the servants, you effectively have a cache of these objects.

The remaining, less frequently-accessed objects can be implemented with a default
servant. For example, in our file system implementation, we could choose to instantiate
directory servants permanently, but to have file objects implemented with a default
servant. This provides efficient navigation through the directory tree and incurs slower
performance only for the (presumably less frequent) file accesses.

This technique could be augmented with a cache of recently-accessed files, along similar
lines to the buffer pool used by the UNIX kernel. The point is that you can combine use of
the ASM with servant locators and default servants to precisely control the trade-offs
among scalability, memory consumption, and performance to suit the needs of your
application.

Note that this approach is useful only if you have advance knowledge of the access
patterns to servants. If it is impossible to statically predict which servants will be most
frequently accessed, it is better to use an evictor.

The Ice Run Time in Detail Evictors

Copyright © 2005-2010 ZeroC, Inc. 18.28

18-19 Evictors

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-19

Evictors
An evictor is a servant locator that instantiates servants up to some

predefined maximum number of instances:

• If a request arrives for a servant that is not yet in memory, the
servant locator instantiates a new servant and returns it, provided
that the limit of servants is not exceeded.

• If a request arrives for a servant that is already in memory, the
servant locator returns that servant.

• If a request arrives for a servant that is not in memory, and the
number of servants is already at the limit, the servant locator
destroys an existing servant and instantiates a new one.

The servant that is evicted is the least-recently-used servant.

Evictors allow control of the footprint–performance trade-off in a server.

By choosing the evictor size appropriately, you get good performance
for the most frequently-used servants, with acceptable memory
consumption.

Notes:

The Ice Run Time in Detail Evictors (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.29

18-20 Evictors (cont. 1)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-20

Evictors (1)
An evictor after requests for object identities 1 to 5 have
arrived (in that order):

The evictor has instantiated five servants. Servant 1 is the
least recently-used servant.

Evictor 5 4 3 2 1

Servants

Evictor Queue

Head Tail

5 4 3 2 1

Notes:

The Ice Run Time in Detail Evictors (cont. 2)

Copyright © 2005-2010 ZeroC, Inc. 18.30

18-21 Evictors (cont. 2)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-21

Evictors (2)
Same evictor after a client accesses servant 3:

The evictor has dequeued the entry for servant 3 and
placed it at the head of the evictor queue, making servant 3
the most recently-used servant.

Evictor 3 5 4 2 1

Servants

Evictor Queue

Head Tail

5 4 3 2 1

Notes:

The Ice Run Time in Detail Evictors (cont. 3)

Copyright © 2005-2010 ZeroC, Inc. 18.31

18-22 Evictors (cont. 3)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-22

Evictors (3)
Same evictor after a client accesses servant 6:

The least recently-used servant (servant 1) has been
removed from the evictor and is destroyed once it no longer
services a request.

Evictor 6 3 5 4 2

Servants

Evictor Queue

Head Tail

6 5 4 3 2

1

1

Notes:

The Ice Run Time in Detail Evictor Implementation

Copyright © 2005-2010 ZeroC, Inc. 18.32

18-23 Evictor Implementation

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-23

Evictor Implementation
Implementation goals:

• Reusable, so it can be used for any type of servant.

• Non-intrusive to servant implementation. (Servant implementation
should not know about evictor.)

• High performance for both locating a servant and evicting a servant.

• Easily configurable evictor size.

Basic implementation:

• Use a map to store identity–servant pairs for quick lookup.

• Use a queue to maintain LRU order. Queue entries point at map
entries. Enqueing, dequeuing, and maintaining LRU order can be
performed in constant time.

• Implementation is inherited from a base class.

Notes:

Our evictor implementation is designed as an abstract base class. The idea is to have the
base class do all the work of maintaining the evictor queue; the derived class needs to be
involved only when a servant needs to be instantiated (and, possibly, when a servant is
evicted). The basic design then looks as follows:
public abstract class EvictorBase implements Ice.ServantLocator

{

 public EvictorBase(int size);

 synchronized public final Ice.Object

 locate(Ice.Current c, Ice.LocalObjectHolder cookie);

 synchronized public final void

 finished(Ice.Current c, Ice.Object o, Object cookie);

 synchronized public final void

 deactivate(String category);

 public abstract Ice.Object

The Ice Run Time in Detail Evictor Implementation

Copyright © 2005-2010 ZeroC, Inc. 18.33

 add(Ice.Current c, Ice.LocalObjectHolder cookie);

 public abstract void

 evict(Ice.Object servant, Object cookie);

 // ...

}

Note that the EvictorBase class implements its own locate, finished, and
deactivate methods. (These methods do the work of maintaining the evictor queue.)

The constructor for the class accepts the size of the evictor. (Of course, you could easily
modify the implementation to retrieve the size from properties instead.)

The class also defines two abstract methods that you must implement in the derived class:

 add

The EvictorBase class calls this method when a client request arrives for which
no servant is in memory. The implementation of add is therefore the same as an
implementation of locate: the method simply instantiates and returns a servant
(without adding that servant to the ASM).

Note that you can return a cookie from add. If you do, that same cookie is passed
to evict when the corresponding servant is evicted. This allows you to pass
additional information from add to evict for each servant.

 evict

This method is called when the evictor evicts a servant. The cookie parameter is
the same object that was returned from the corresponding call to add.

Unless you have special cleanup requirements, this method is usually empty.

The Ice Run Time in Detail Evictor Implementation (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.34

18-24 Evictor Implementation (cont. 1)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-24

Evictor Implementation (1)
The private part of EvictorBase:

• stores the cookie that is returned from add (so it can be
passed to evict) in a map,

• stores an iterator into the evictor queue that marks the
position of the servant in the queue,

• stores a use count for each servant that is incremented
when an operation is dispatched, and decremented
when an operation completes.

Notes:

The private part of EvictorBase obviously must store the cookie that is returned from
add, so it can pass the same cookie to the corresponding call to evict.

In addition, the map stores an iterator into the evictor queue for each entry. This is
necessary so we can efficiently maintain the queue in LRU order: the iterator allows the
entry for a servant in the queue to be located in constant time (instead of having to
perform a linear search on the queue).

Finally, for each servant, the evictor maintains a use count that counts the number of
active operation invocations in that servant. We need the use count to correctly deal with
long-running operations.

Suppose a client invokes a long-running operation on an Ice object with identity I. In
response, the evictor adds a servant for I to the evictor queue. While the original
invocation is still executing, other clients invoke operations on various Ice objects, which
leads to more servants for other object identities being added to the queue. As a result, the
servant for identity I gradually migrates toward the tail of the queue. If enough client
requests for other Ice objects arrive while the operation on object I is still executing, the
servant for I could be evicted while it is still executing the original request.

The Ice Run Time in Detail Evictor Implementation (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.35

By itself, this will not do any harm. However, if the servant is evicted and a client then
invokes another request on object I, the evictor would have no idea that a servant for I is
still around and would add a second servant for I. However, having two servants for the
same Ice object in memory is likely to cause problems, especially if the servant’s
operation implementations write to a database.

The use count allows us to avoid this problem: we keep track of how many requests are
currently executing inside each servant and, while a servant is busy, avoid evicting that
servant. As a result, the queue size is not a hard upper limit: long-running operations can
temporarily cause more servants than the limit to appear in the queue. However, as soon
as excess servants become idle, they are evicted as usual.

Note that the LinkedList class that is used here is a special version that does not
invalidate iterators during deletion. (You can find the implementation of this class in the
Ice distribution in demo/book/evictor.)
public abstract class EvictorBase implements Ice.ServantLocator

{

 // ...

 private class EvictorEntry

 {

 Ice.Object servant;

 Object userCookie;

 java.util.Iterator<Ice.Identity> pos;

 int useCount;

 }

 private class EvictorCookie

 {

 public EvictorEntry entry;

 }

 private java.util.Map<Ice.Identity, EvictorEntry> _map =

 new java.util.HashMap<Ice.Identity, EvictorEntry>();

 private LinkedList<Ice.Identity> _queue =
 new LinkedList<Ice.Identity>(); // Special list

 private int _size;

}

The constructor implementation is trivial: it simply initializes the size of the evictor
queue:
public

EvictorBase(int size)

{

 _size = size < 0 ? 1000 : size;

}

The meat of the implementation is in locate:
synchronized public final Ice.Object

locate(Ice.Current c, Ice.LocalObjectHolder cookie)

The Ice Run Time in Detail Evictor Implementation (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.36

{

 //

 // Create a cookie.

 //

 EvictorCookie ec = new EvictorCookie();

 cookie.value = ec;

 //

 // Check if we already have a servant in the map.

 //

 ec.entry = _map.get(c.id);

 if(ec.entry != null)

 {

 //

 // Got an entry already, dequeue the entry from

 // its current position.

 //

 ec.entry.pos.remove();

 }

 else

 {

 //

 // We do not have entry. Ask the derived class to

 // instantiate a servant and add a new entry to the map}

 //

 ec.entry = new EvictorEntry();

 Ice.LocalObjectHolder cookieHolder =
 new Ice.LocalObjectHolder();

 ec.entry.servant = add(c, cookieHolder); // Down-call

 if(ec.entry.servant == null)

 {

 return null;

 }

 ec.entry.userCookie = cookieHolder.value;

 ec.entry.useCount = 0;

 _map.put(c.id, ec.entry);

 }

 //

 // Increment the use count of the servant and enqueue

 // the entry at the front, so we get LRU order.

 //

 ++(ec.entry.useCount);

 _queue.addFirst(c.id);

 ec.entry.pos = _queue.iterator();

The Ice Run Time in Detail Evictor Implementation (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.37

 ec.entry.pos.next(); // Position the iterator on the element.

 return ec.entry.servant;

}

Note that the method is synchronized to protect the evictor’s data structures from
concurrent access. The first step is to create the cookie that is returned from locate and
will be passed by the Ice run time to the corresponding call to finished. The cookie
contains a reference to an evictor entry, of type EvictorEntry. This is also the value
type of our map entries, so we do not store two copies of the same information
redundantly.

The next step is to look in the evictor map to see whether we already have an entry for this
object identity. If so, we initialize the cookie’s value with that entry and remove the entry
from its current queue position.

Otherwise, we do not have an entry for this object identity yet, so we have to create one.
The code creates a new evictor entry, and then calls add to get a new servant. This is a
down-call to the concrete class that will be derived from EvictorBase. The
implementation of add must attempt to locate the object state for the Ice object with the
identity passed inside the Current object and either return a servant as usual, or return
null or throw an exception to indicate failure. If add returns null, we return null to let the
Ice run time know that no servant could be found for the current request. If add succeeds,
we initialize the entry’s use count to zero and insert the entry into the evictor map.

The last few lines of locate add the entry for the current request to the head of the
evictor queue to maintain its LRU property, increment the use count of the entry, and
finally return the servant to the Ice run time.

The implementation of finished is much simpler: it decrements the use count and calls
the private method evictServants to get rid of any servants that need to be evicted:
synchronized public final void

finished(Ice.Current c, Ice.Object o, Object cookie)

{

 EvictorCookie ec = (EvictorCookie)cookie;

 //

 // Decrement use count and check if

 // there is something to evict.

 //

 --(ec.entry.useCount);;

 evictServants();

}

evictServants scans the evictor queue for elements in excess of the evictor’s size: any
excess entries with a zero use count are evicted by calling the derived class’s evict
method:
private void evictServants()

{

 //

 // If the evictor queue has grown larger than the limit,

 // look at the excess elements to see whether any of them

 // can be evicted.

The Ice Run Time in Detail Evictor Implementation (cont. 1)

Copyright © 2005-2010 ZeroC, Inc. 18.38

 //

 for(int i = _map.size() - _size; i > 0; --i)

 {

 java.util.Iterator<Ice.Identity> p = _queue.riterator();

 Ice.Identity id = p.next();

 EvictorEntry e = _map.get(id);

 if(e.useCount == 0)

 {

 evict(e.servant, e.userCookie); // Down-call

 p.remove();

 _map.remove(id);

 }

 }

}

Finally, the deactivate implementation cleans up by setting the evictor size to zero and
then calling evictServants. This causes all servants on the queue to be evicted. (It is
guaranteed that the use count of all the servants will be zero because the Ice run time does
not call deactivate until no more requests are executing inside the object adapter.)
synchronized public final void

deactivate(String category)

{

 _size = 0;

 evictServants();

}

The Ice Run Time in Detail Using EvictorBase

Copyright © 2005-2010 ZeroC, Inc. 18.39

18-25 Using EvictorBase

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

18-25

Using EvictorBase
public class MyInterfaceEvictor extends EvictorBase
{

public Ice.Object
add(Ice.Current c, Ice.LocalObjectHolder cookie)
{

MyServantDetails d = null;
try {

d = DB_lookup(c.id.name);
} catch (DB_error ex)

return null;
}
return new MyInterfaceI(d);

}

public void
evict(Ice.Object servant, Object cookie)
{
}

}

Notes:

Creating a concrete evictor could not be simpler: we simply move the code of our original
locate implementation in Section 18-11 into add instead. Using the evictor now
becomes a matter of instantiating the class and registering it as a servant locator with the
object adapter:
EvictorBase = new MyInterfaceEvictor();

adapter.addServantLocator(ev, "");

License

Copyright © 2005-2010 ZeroC, Inc. 19.1

19 License
THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS
CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK
IS PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE
OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR
COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT
AND AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE
EXTENT THIS LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE
LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN
CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

a. "Collective Work" means a work, such as a periodical issue, anthology or
encyclopedia, in which the Work in its entirety in unmodified form, along with one
or more other contributions, constituting separate and independent works in
themselves, are assembled into a collective whole. A work that constitutes a
Collective Work will not be considered a Derivative Work (as defined below) for
the purposes of this License.

b. "Creative Commons Compatible License" means a license that is listed at
http://creativecommons.org/compatiblelicenses that has been approved by Creative
Commons as being essentially equivalent to this License, including, at a minimum,
because that license: (i) contains terms that have the same purpose, meaning and
effect as the License Elements of this License; and, (ii) explicitly permits the
relicensing of derivatives of works made available under that license under this
License or either a Creative Commons unported license or a Creative Commons
jurisdiction license with the same License Elements as this License.

c. "Derivative Work" means a work based upon the Work or upon the Work and
other pre-existing works, such as a translation, musical arrangement, dramatization,
fictionalization, motion picture version, sound recording, art reproduction,
abridgment, condensation, or any other form in which the Work may be recast,
transformed, or adapted, except that a work that constitutes a Collective Work will
not be considered a Derivative Work for the purpose of this License. For the
avoidance of doubt, where the Work is a musical composition or sound recording,
the synchronization of the Work in timed-relation with a moving image
("synching") will be considered a Derivative Work for the purpose of this License.

d. "License Elements" means the following high-level license attributes as selected
by Licensor and indicated in the title of this License: Attribution, ShareAlike.

e. "Licensor" means the individual, individuals, entity or entities that offers the Work
under the terms of this License.

f. "Original Author" means the individual, individuals, entity or entities who created
the Work.

License

Copyright © 2005-2010 ZeroC, Inc. 19.2

g. "Work" means the copyrightable work of authorship offered under the terms of this
License.

h. "You" means an individual or entity exercising rights under this License who has
not previously violated the terms of this License with respect to the Work, or who
has received express permission from the Licensor to exercise rights under this
License despite a previous violation.

2. Fair Use Rights. Nothing in this license is intended to reduce, limit, or restrict any
rights arising from fair use, first sale or other limitations on the exclusive rights of the
copyright owner under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the duration of
the applicable copyright) license to exercise the rights in the Work as stated below:

a. to reproduce the Work, to incorporate the Work into one or more Collective
Works, and to reproduce the Work as incorporated in the Collective Works;

b. to create and reproduce Derivative Works provided that any such Derivative Work,
including any translation in any medium, takes reasonable steps to clearly label,
demarcate or otherwise identify that changes were made to the original Work. For
example, a translation could be marked "The original work was translated from
English to Spanish," or a modification could indicate "The original work has been
modified.";

c. to distribute copies or phonorecords of, display publicly, perform publicly, and
perform publicly by means of a digital audio transmission the Work including as
incorporated in Collective Works;

d. to distribute copies or phonorecords of, display publicly, perform publicly, and
perform publicly by means of a digital audio transmission Derivative Works.

e. For the avoidance of doubt, where the Work is a musical composition:

i. Performance Royalties Under Blanket Licenses. Licensor waives the
exclusive right to collect, whether individually or, in the event that
Licensor is a member of a performance rights society (e.g. ASCAP, BMI,
SESAC), via that society, royalties for the public performance or public
digital performance (e.g. webcast) of the Work.

ii. Mechanical Rights and Statutory Royalties. Licensor waives the
exclusive right to collect, whether individually or via a music rights agency
or designated agent (e.g. Harry Fox Agency), royalties for any
phonorecord You create from the Work ("cover version") and distribute,
subject to the compulsory license created by 17 USC Section 115 of the
US Copyright Act (or the equivalent in other jurisdictions).

f. Webcasting Rights and Statutory Royalties. For the avoidance of doubt, where
the Work is a sound recording, Licensor waives the exclusive right to collect,
whether individually or via a performance-rights society (e.g. SoundExchange),
royalties for the public digital performance (e.g. webcast) of the Work, subject to
the compulsory license created by 17 USC Section 114 of the US Copyright Act
(or the equivalent in other jurisdictions).

License

Copyright © 2005-2010 ZeroC, Inc. 19.3

The above rights may be exercised in all media and formats whether now known or
hereafter devised. The above rights include the right to make such modifications as are
technically necessary to exercise the rights in other media and formats. All rights not
expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

a. You may distribute, publicly display, publicly perform, or publicly digitally
perform the Work only under the terms of this License, and You must include a
copy of, or the Uniform Resource Identifier for, this License with every copy or
phonorecord of the Work You distribute, publicly display, publicly perform, or
publicly digitally perform. You may not offer or impose any terms on the Work
that restrict the terms of this License or the ability of a recipient of the Work to
exercise of the rights granted to that recipient under the terms of the License. You
may not sublicense the Work. You must keep intact all notices that refer to this
License and to the disclaimer of warranties. When You distribute, publicly display,
publicly perform, or publicly digitally perform the Work, You may not impose any
technological measures on the Work that restrict the ability of a recipient of the
Work from You to exercise of the rights granted to that recipient under the terms of
the License. This Section 4(a) applies to the Work as incorporated in a Collective
Work, but this does not require the Collective Work apart from the Work itself to
be made subject to the terms of this License. If You create a Collective Work, upon
notice from any Licensor You must, to the extent practicable, remove from the
Collective Work any credit as required by Section 4(c), as requested. If You create
a Derivative Work, upon notice from any Licensor You must, to the extent
practicable, remove from the Derivative Work any credit as required by Section
4(c), as requested.

License

Copyright © 2005-2010 ZeroC, Inc. 19.4

b. You may distribute, publicly display, publicly perform, or publicly digitally
perform a Derivative Work only under: (i) the terms of this License; (ii) a later
version of this License with the same License Elements as this License; (iii) either
the Creative Commons (Unported) license or a Creative Commons jurisdiction
license (either this or a later license version) that contains the same License
Elements as this License (e.g. Attribution-ShareAlike 3.0 (Unported)); (iv) a
Creative Commons Compatible License. If you license the Derivative Work under
one of the licenses mentioned in (iv), you must comply with the terms of that
license. If you license the Derivative Work under the terms of any of the licenses
mentioned in (i), (ii) or (iii) (the "Applicable License"), you must comply with the
terms of the Applicable License generally and with the following provisions: (I)
You must include a copy of, or the Uniform Resource Identifier for, the Applicable
License with every copy or phonorecord of each Derivative Work You distribute,
publicly display, publicly perform, or publicly digitally perform; (II) You may not
offer or impose any terms on the Derivative Works that restrict the terms of the
Applicable License or the ability of a recipient of the Work to exercise the rights
granted to that recipient under the terms of the Applicable License; (III) You must
keep intact all notices that refer to the Applicable License and to the disclaimer of
warranties; and, (IV) when You distribute, publicly display, publicly perform, or
publicly digitally perform the Work, You may not impose any technological
measures on the Derivative Work that restrict the ability of a recipient of the
Derivative Work from You to exercise the rights granted to that recipient under the
terms of the Applicable License. This Section 4(b) applies to the Derivative Work
as incorporated in a Collective Work, but this does not require the Collective Work
apart from the Derivative Work itself to be made subject to the terms of the
Applicable License.

License

Copyright © 2005-2010 ZeroC, Inc. 19.5

c. If You distribute, publicly display, publicly perform, or publicly digitally perform
the Work (as defined in Section 1 above) or any Derivative Works (as defined in
Section 1 above) or Collective Works (as defined in Section 1 above), You must,
unless a request has been made pursuant to Section 4(a), keep intact all copyright
notices for the Work and provide, reasonable to the medium or means You are
utilizing: (i) the name of the Original Author (or pseudonym, if applicable) if
supplied, and/or (ii) if the Original Author and/or Licensor designate another party
or parties (e.g. a sponsor institute, publishing entity, journal) for attribution
("Attribution Parties") in Licensor's copyright notice, terms of service or by other
reasonable means, the name of such party or parties; the title of the Work if
supplied; to the extent reasonably practicable, the Uniform Resource Identifier, if
any, that Licensor specifies to be associated with the Work, unless such URI does
not refer to the copyright notice or licensing information for the Work; and,
consistent with Section 3(b) in the case of a Derivative Work, a credit identifying
the use of the Work in the Derivative Work (e.g., "French translation of the Work
by Original Author," or "Screenplay based on original Work by Original Author").
The credit required by this Section 4(c) may be implemented in any reasonable
manner; provided, however, that in the case of a Derivative Work or Collective
Work, at a minimum such credit will appear, if a credit for all contributing authors
of the Derivative Work or Collective Work appears, then as part of these credits
and in a manner at least as prominent as the credits for the other contributing
authors. For the avoidance of doubt, You may only use the credit required by this
Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly
assert or imply any connection with, sponsorship or endorsement by the Original
Author, Licensor and/or Attribution Parties, as appropriate, of You or Your use of
the Work, without the separate, express prior written permission of the Original
Author, Licensor and/or Attribution Parties.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,
LICENSOR OFFERS THE WORK AS-IS AND ONLY TO THE EXTENT OF ANY
RIGHTS HELD IN THE LICENSED WORK BY THE LICENSOR. THE LICENSOR
MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND
CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE,
MARKETABILITY, MERCHANTIBILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER
DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW
THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT
APPLY TO YOU.

6. Limitation on Liability

License

Copyright © 2005-2010 ZeroC, Inc. 19.6

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT
WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY
SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK,
EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon
any breach by You of the terms of this License. Individuals or entities who have
received Derivative Works or Collective Works from You under this License,
however, will not have their licenses terminated provided such individuals or
entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8
will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for
the duration of the applicable copyright in the Work). Notwithstanding the above,
Licensor reserves the right to release the Work under different license terms or to
stop distributing the Work at any time; provided, however that any such election
will not serve to withdraw this License (or any other license that has been, or is
required to be, granted under the terms of this License), and this License will
continue in full force and effect unless terminated as stated above.

8. Miscellaneous

a. Each time You distribute or publicly digitally perform the Work (as defined in
Section 1 above) or a Collective Work (as defined in Section 1 above), the
Licensor offers to the recipient a license to the Work on the same terms and
conditions as the license granted to You under this License.

b. Each time You distribute or publicly digitally perform a Derivative Work, Licensor
offers to the recipient a license to the original Work on the same terms and
conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it
shall not affect the validity or enforceability of the remainder of the terms of this
License, and without further action by the parties to this agreement, such provision
shall be reformed to the minimum extent necessary to make such provision valid
and enforceable.

d. No term or provision of this License shall be deemed waived and no breach
consented to unless such waiver or consent shall be in writing and signed by the
party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to
the Work licensed here. There are no understandings, agreements or
representations with respect to the Work not specified here. Licensor shall not be
bound by any additional provisions that may appear in any communication from
You. This License may not be modified without the mutual written agreement of
the Licensor and You.

	Java_SW_Front_TableContents
	Java_SW_1_IntroIce
	Java_SW_2_Slice
	Java_SW_3_Assignment1
	Java_SW_4_ClientSide_SliceJavaMap
	Java_SW_5_Assignment2
	Java_SW_6_ServerSide_JavaMapping
	Java_SW_7_Assignment3
	Java_SW_8_Properties_and_Configuration
	Java_SW_9_Assignment4
	Java_SW_10_Multi-Threaded_Ice
	Java_SW_11_Assignment5
	Java_SW_12_Object_Life_Cycle
	Java_SW_13_Assignment6
	Java_SW_14_Glacier2
	Java_SW_15_Assignment7
	Java_SW_16_IceGrid
	Java_SW_17_Assignment8
	Java_SW_18_IceRunTime
	Java_SW_19_License

