
Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

1. Introduction to Ice

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-1

Lesson Overview
• This lesson covers:

– the motivation for using Ice
– the fundamentals of the Ice architecture
– the Ice object model

• This lesson also provides an overview of the major Ice
components (including some components not covered in
this course).

• By the end of this lesson, you will have a basic
understanding of the Ice architecture and how Ice helps
you to develop distributed applications.

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-2

What is Ice?
• An object-oriented distributed middleware platform.
• Ice includes:

– object-oriented RPC mechanism
– language-neutral specification language (Slice)
– language mappings for various languages: C++, Java, C#, Python,

Objective-C, Ruby and PHP (Ruby and PHP for the client-side only)
– support for different transports (TCP, SSL, UDP) with highly-efficient

protocol
– external services (server activation, firewall traversal, etc.)
– integrated persistence (Freeze)
– threading support

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-3

Clients and Servers
A client–server system is any software system in which different
parts of the system cooperate on an overall task.

– A server is an entity that, on request, provides a service (such as a
computation) to clients. Servers are passive.

– A client is an entity that requests services from servers.
Clients are active.

– Client and server often run on separate machines, but might also
run on the same machine or be linked into a single process.

Frequently, clients and servers are not “pure” clients and servers.
– A server might act as a client, and a client might act a server.
– Client and server are therefore roles that have a well-defined

meaning only for the duration of a single request. The initiating side
is, by definition, the client; the responding side is, by definition, the
server.

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-4

Ice Objects
• An Ice object is a conceptual entity, that is, an

abstraction.
• An Ice object:

– can exist in the local or a remote address space
– responds to operation invocations
– can have multiple redundant instantiations
– has one or more interfaces (facets), and has a single

most-derived default interface (the default facet)
– provides operations that can accept in-parameters, and

can return out-parameters and/or a return value
– has a unique object identity

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-5

Proxies
• Clients contact Ice objects via proxies.
• A proxy is a handle that uniquely denotes an Ice object.
• A proxy is the local ambassador for a (possibly remote)

Ice object.
• When a client invokes an operation on a proxy, the Ice

run time:
1. Locates the Ice object
2. Activates the object’s implementation within the server
3. Transmits in-parameters to the object
4. Waits for the operation to complete
5. Returns any out-parameters and the return value to the client

(or an exception in case of an error)

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-6

Stringified Proxies
• Proxies can be converted to and from strings.

SimplePrinter:default -h host.xyz.com -p 10000

• This is a proxy for an object with identity SimplePrinter.
• The object’s server runs on host.xyz.com and listens on port

10000 for incoming requests.
• The server can be contacted using the configured default protocol.

(If no default protocol is configured, the protocol defaults to TCP).
• Because such a proxy directly contains the endpoint at which the

server can be found, it is known as a direct proxy. The general form
of stringified direct proxies is:
<identity>:<endpoint>[:<endpoint>...]

• Endpoints have the general form:
<protocol> [-h <host>] [-p <port>] [-t timeout] [-z]

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-7

Servants
A servant is a server-side programming-language artifact that
provides the concrete representation of an abstract Ice object.
Servants are said to incarnate Ice objects.

– Typically, servants are object instances with methods that
correspond to the operations supported by an Ice object.

– Servants are written by you, the developer.
– When a client invokes an operation, the Ice run time takes care of

invoking the corresponding method on the servant.
– The method bodies on a servant provide the behavior of the

corresponding Ice object.
– A single servant can incarnate a single Ice object, or simultaneously

incarnate several Ice objects.
– A single Ice object can have multiple servants (typically in different

servers, for redundancy).

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-8

At-Most-Once Semantics
The Ice run time guarantees at-most-once semantics.
A single operation invocation by a client is guaranteed to:

– either invoke the operation exactly once
– or invoke the operation not at all

It is impossible for a single invocation of a client to result in
the operation being invoked more than once.
At-most-once semantics are important if an operation is not
idempotent.
You can mark individual operations as idempotent to relax the
strict at-most-once semantics.

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-9

Method Invocation and Dispatch
Ice supports:
• Oneway and twoway synchronous method invocation
• Oneway and twoway asynchronous method invocation

(AMI)
• Batched oneway invocation
• Datagram invocation
• Batched datagram invocation
• Synchronous method dispatch
• Asynchronous method dispatch (AMD)

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-10

Client and Server Structure
Server ApplicationClient Application

Generated Code

Proxy
Code

Network

Ice API

Client Ice Core

Object
AdapterIce API

Server Ice Core

Skeleton

Ice API

Introduction to Ice
Copyright © 2005-2010 ZeroC, Inc. 1-11

Ice Services
Ice provides a number of services:
• Persistence service (Freeze)
• Replication, load balancing, server activation service

(IceGrid)
• Application server (IceBox)
• Publish–subscribe service (IceStorm)
• Software distribution and patching service (IcePatch2)
• Firewall traversal and session management (Glacier2)
Freeze is a library; the other services are implemented as
stand-alone processes.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

2. The Slice Interface
Definition Language

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-1

Lesson Overview
• This lesson presents:

– the syntax and semantics of the Slice interface
definition language

• Slice is an acronym for Specification Language for Ice,
but is pronounced as a single syllable, to rhyme with Ice.

• By the end of this lesson, you will be able to write
interface definitions in Slice and to compile these
definitions into Java stubs and skeletons.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-2

What is Slice?
• Slice separates language-independent types from language-

specific implementation.
• A compiler creates language-specific source code from Slice

definitions.
• Slice is a declarative language that defines types. You cannot

write executable statements in Slice.
• Slice establishes the client-server contract: data can be

exchanged only if it is defined in Slice, via operations that are
defined in Slice.

• Slice definitions are analogous to C++ header files: they ensure
that client and server agree about the interfaces and data types
they use to exchange data.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-3

Single-Language Development

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-4

Cross-Language Development

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-5

Slice Source Files
• Slice source files must end in a .ice extension.
• Slice source files are preprocessed by the C++

preprocessor, so you can use #include, #define, etc.
• If you #include another file, the compiler parses

everything, but generates code only for the including
file—the included file must be compiled separately.

• Slice is a free-form language, so indentation and white
space are not lexically significant (other than as token
separators).

• Definitions can appear in any order, but things must be
defined before they are used (or forward declared).

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-6

Comments and Keywords
• Slice supports both C- and C++-style comments:

/*
* This is a comment.
*/

// This comment extends to the end of this line.

• Slice keywords are written in lowercase (e.g. class), except for the
keywords Object and LocalObject, which must be capitalized as
shown.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-7

Identifiers
• Identifiers consist of alphabetic characters, digits, and

optionally underscores.
• Identifiers must start with an alphabetic character.
• Identifiers are case insensitive: Foo and foo cannot both be

defined in the same naming scope.
• Identifiers must be capitalized consistently: once you have

defined Foo, you must refer to it as Foo (not foo or FOO).
• Slice identifiers cannot begin with Ice.
• You can define identifiers that are the same as a keyword, by

escaping them:
\dictionary // Identifier, not keyword

This mechanism exists as an escape hatch in case new
keywords are added to the language over time.

• Avoid creating identifiers that are likely to be programming-
language keywords, such as function or new.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-8

Modules
A Slice file contains one or more module definitions.
module Example {

// Definitions here...
};

The only definition that can appear at global scope (other than
comments and preprocessor directives) is a module definition.

All other definitions must be nested inside modules.
Modules can be reopened and can be nested.
module Example {

// Some definitions here.
};

module Example {
// More definitions here...
module Nested { /* … */};

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-9

The Ice Modules
Ice uses a number of top-level modules: Ice, Freeze,
Glacier2, IceBox, IcePatch2, IceStorm, and IceGrid.
• The Ice module contains definitions for basic run

time features.
• The remaining modules contain definitions for

specific services.
Almost all of the Ice run time APIs are defined in Slice.
This automatically defines the API for all implementation
languages.
Only a few key functions (the initialization for the run time)
and a few language-specific helper functions are defined
natively.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-10

Basic Slice Types

Slice provides a number of built-in basic types:

Type Range of Mapped Type Size of Mapped Type
bool false or true ≥ 1 bits
byte -128-127 or 0-255 ≥ 8 bits
short -215 to 215-1 ≥ 16 bits
int -231 to 231-1 ≥ 32 bits
long -263 to 263-1 ≥ 64 bits
float IEEE single-precision ≥ 32 bits
double IEEE double-precision ≥ 64 bits
string All Unicode glyphs, excluding

the character with all bits zero.
Variable-length

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-11

Enumerations

Enumerations are much like their Java counterpart:
enum Fruit { Apple, Pear, Orange };

You cannot specify the value of the enumerators:
enum Fruit { Apple=0, Pear=7, Orange=2 }; // Illegal!

As for C++ (and unlike Java), enumerators enter the
namespace enclosing the enumeration:
enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP }; // Error!

Empty enumerations are illegal.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-12

Structures

Structures contain at least one member of arbitrary type:
struct TimeOfDay {

short hour; // 0-23

short minute; // 0-59

short second; // 0-59

};

The name of the structure, TimeOfDay, becomes a type
name in its own right. (There are no typedefs in Slice.)
Structures form a namespace, the member names must be
unique only within their enclosing structure.
Members may optionally declare a default value.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-13

Sequences
Sequences are (possibly empty) variable-length collections:
sequence<Fruit> FruitPlatter;

The element type can be anything, including another sequence
type:
sequence<FruitPlatter> FruitBanquet;

The order of elements is never changed during transmission;
sequences are ordered collections.
Use sequences to model collections, such as sets, lists, arrays,
bags, queues, and trees.
Use sequences to model optional values:
sequence<string> InitialOpt;

struct Person {
string firstName;
InitialOpt initial;
string lastname;

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-14

Dictionaries
A dictionary is a map of key-value pairs:
struct Employee {

long number;

string firstName;

string lastName;

};

dictionary<long, Employee> EmployeeMap;

Use dictionaries to model maps and sparse arrays.
Dictionaries map to efficient lookup data structures, such as STL
maps or hash tables.
The key type of a dictionary must be one of:
• An integral type (bool, byte, short, int, long, enum) or string
• A structure containing only members of integral type or type string

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-15

Constants and Literals
Slice permits constants of type:
• bool, byte, short, int, long
• enumerated type
• float and double
• string

Examples:
const bool AppendByDefault = true;
const byte LowerNibble = 0x0f;
const string Advice = "Don't Panic!";
const short TheAnswer = 42;
const double PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit FavoriteFruit = Pear;

Slice does not support constant expressions.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-16

Interfaces
Interfaces define object types:
struct TimeOfDay { /* ... */ };

interface Clock {

TimeOfDay getTime();

void setTime(TimeOfDay time);

};

• Interfaces define the public interface of an object. There is no notion of
a private part of an object in Slice.

• Interfaces only have operations, not data members. (Data members
are implementation state, not interface.)

• Invoking an operation on an interface sends a (possibly remote)
invocation (RPC) to the target object.

• Interfaces define the smallest and only granularity of distribution: if
something does not have an interface (or Slice class, which is also an
interface), it cannot be invoked remotely.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-17

Operations and Parameters
An interface contains zero or more operation definitions.
Each operation definition has:

– an operation name
– a return type (or void if none)
– zero or more parameters
– an optional idempotent modifier
– an optional exception specification

If an operation has out-parameters, they must follow in-parameters.
Operations cannot be overloaded.
interface Example {

void op();

int otherOp(string p1, out string p2);

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-18

idempotent Operations
An idempotent operation is an operation that, if invoked
twice, has the same effect as if it is invoked once:

idempotent void setName(string name);
idempotent string getName();

The idempotent keyword affects the error-recovery behavior
of the Ice run time: for normal operations, the run time has
to be more conservative to preserve at-most-once
semantics.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-19

User Exceptions
Operations can throw exceptions:
exception Error {}; // Empty exceptions are legal

exception RangeError {

TimeOfDay errorTime;

TimeOfDay minTime;

TimeOfDay maxTime;

};

interface Clock {

idempotent TimeOfDay getTime();

idempotent void setTime(TimeOfDay time)

throws RangeError, Error;

};

Operations must declare the exceptions they can throw in the exception
specification.
Exceptions are not data types: they cannot be used as data members or
parameters.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-20

Exception Inheritance
Exceptions can form single-inheritance hierarchies:
exception ErrorBase {

string reason;

};

enum RTError {

DivideByZero, NegativeRoot, IllegalNull /* ... */

};

exception RuntimeError extends ErrorBase {

RTError err;

};

An operation that specifies a base exception in its exception specification
can throw the base exception and any exceptions derived from the base:
void op() throws ErrorBase; // Can throw RuntimeError

Derived exceptions cannot redefine data members defined in a base.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-21

Ice Run-Time Exceptions
Any operation (whether it has an exception specification or not)
can always throw Ice run-time exceptions.
Run-time exceptions capture common error conditions, such as
out of memory, connect timeout, etc.
Three exceptions have special meaning:
• UnknownException

The operation in the server has thrown a non-Ice exception (such as
java.lang.ClassCastException).

• UnknownUserException

The operation has thrown an exception that is not in its exception
specification.

• UnknownLocalException

The operation on the server-side has thrown a run-time exception that
is not marshaled back to the client. (See next slide.)

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-22

Run-Time Exceptions Raised by the Server
There are three exceptions that can be received from the remote end:
• ObjectNotExistException

The client has called an operation via a proxy that denotes a servant
that does not exist. Most likely cause: the object existed in the past but
has since been destroyed.

• OperationNotExistException

The client has invoked an operation that the target object does not
support. Most likely cause: client and server were compiled with
mismatched Slice definitions.

• FacetNotExistException

The client has called an operation via a proxy that denotes an existing
object, but the specified facet does not exist. Most likely cause: the
client specified an incorrect facet name, or the facet existed in the past
but has since been destroyed.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-23

Proxies
Proxies are the distributed equivalent of class pointers or references:

interface Clock { /* ... */ };

dictionary<string, Clock*> TimeMap; // Time zones

exception BadZoneName { /* ... */ };

interface WorldTime {

idempotent Clock* findZone(string zoneName) throws BadZoneName;

idempotent TimeMap listZones();

};

The * operator is known as the proxy operator.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-24

Interface Inheritance
Interfaces support inheritance:
interface AlarmClock extends Clock {

TimeOfDay getAlarmTime();

void setAlarmTime(TimeOfDay alarmTime)

throws BadTimeVal;

};

Multiple inheritance is legal as well:
interface Radio {

void setFrequency(long hertz) throws GenericError;

void setVolume(long dB) throws GenericError;

};

enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {

void setMode(AlarmMode mode);

AlarmMode getMode();

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-25

Interface Inheritance Limitations
An interface cannot inherit an operation with the same name
from more than one base interface:
interface Clock {

void set(TimeOfDay time); // set time

};

interface Radio {

void set(long hertz); // set frequency

};

interface RadioClock extends Radio, Clock { // Illegal!

// ...

};

There is no concept of overriding or overloading.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-26

Implicit Inheritance from Object
All interfaces implicitly inherit from Object, which is the root of the
inheritance hierarchy.
interface ProxyStore {

void putProxy(string name, Object* o);

Object* getProxy(string name);

};

Because any proxy is assignment compatible with Object, ProxyStore
can store and return proxies for any interface type.

Explicit inheritance from Object is illegal:
interface Wrong extends Object { // Error!

// ...

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-27

Self-Referential Interfaces & Forward Declarations

Interfaces can be self-referential:
interface Node {

int val();

Node* next();

};

You can forward-declare an interface to create interfaces that
mutually refer to each other:
interface Wife; // Forward declaration

interface Husband {

Wife* getWife();

};

interface Wife {

Husband* getHusband();

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-28

Classes
Classes can contain data members as well as operations.
Classes support single implementation and multiple interface inheritance.
They implicitly derive from Object (just like interfaces).
One way to use classes is as structures that are extensible by inheritance:
class TimeOfDay {

short hour; // 0 - 23

short minute; // 0 - 59

short second; // 0 - 59

};

class DateTime extends TimeOfDay {

short day; // 1 - 31

short month; // 1 - 12

short year; // 1753 onwards

};

Empty classes are legal.
Data members may define default values, as with structures.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-29

Classes as Parameters and Slicing
Classes are passed by value, just like structures.
You can pass a derived class where a base is expected:
interface Clock {

void setTime(TimeOfDay t);

};

You can pass a TimeOfDay instance or a DateTime instance to setTime.
The receiver gets the most-derived type that it has static type knowledge
of:
• If the server was linked with the stubs for both TimeOfDay and

DateTime, the server receives a DateTime instance (as the static type
TimeOfDay).

• If the server was linked with the stubs for only TimeOfDay, the
DateTime object is sliced to TimeOfDay in the server.

Use classes if you need polymorphic values (instead of interfaces).

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-30

Classes as Unions
You can use derivation from a common base class to model unions.
It is often useful to include a discriminator in the base class, so the
receiver can use a switch statement to find which member is active
(instead of an if-then-else chain of dynamic casts).
class UnionDiscriminator {

int d;

};

class Member1 extends UnionDiscriminator {

// d == 1

string s;

};

class Member2 extends UnionDiscriminator {

// d == 2

double d;

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-31

Self-Referential Classes
Like interfaces, classes can be self-referential:
class Link {

SomeType value;

Link next; // Note: NOT Link* !

};

This looks like Link includes itself but really means that next contains
a pointer to another Link instance that is in the same address space.
Passing an instance of Link as a parameter passes the entire chain of
instances to the receiver.
You can use self-referential classes to model arbitrary graphs.
Passing a node of the graph as a parameter marshals the entire graph
that is reachable using that node as a starting point.
Cyclic graphs are permitted, as are graphs with nodes of in-degree > 1.
Forward declarations are legal (with the same syntax as for interfaces).

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-32

Classes with Operations
class TimeOfDay {

short hour; // 0 - 23

short minute; // 0 - 59

short second; // 0 – 59

string format();

};

Classes with operations are mapped to abstract base classes with
abstract methods.
The application provides the implementation for the operations.
Invoking an operation on a class invokes the operation in the local
address space of the class.
It follows that, if a class with operations is sent as a parameter, the code
for the operation must exist at the receiving end. The Ice run time only
marshals the data, not the code.
Classes with operations allow you to implement client-side processing.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-33

Classes Implementing Interfaces
interface Time {

idempotent TimeOfDay getTime();

idempotent void setTime(TimeOfDay time);

};

interface Radio {

idempotent void setFrequency(long hertz);

idempotent void setVolume(long dB);

};

class RadioClock implements Time, Radio {

TimeOfDay time;

long hertz;

};

Classes can implement one or more interfaces (in addition to extending a
single other class).
The derived class inherits all of the operations of its base interface(s).

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-34

Class Inheritance Limitations
Operations and data members must be unique within a hierarchy:
interface BaseInterface {

void op();

};

class BaseClass {

int member;

};

class DerivedClass

extends BaseClass

implements BaseInterface {

void someOperation(); // OK

int op(); // Error!

int someMember; // OK

long member; // Error!

};

As for interfaces, you cannot inherit the same operation from different
base interfaces.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-35

Pass-by-Value Versus Pass-by-Reference
You can create proxies to classes:
class TimeOfDay { /* ... */ };

interface Clock {

TimeOfDay getTime(); // Returns class

TimeOfDay* getTimeProxy(); // Returns proxy

};

Invoking an operation on a class invokes the operation locally.
Invoking an operation on a proxy invokes the operation remotely.
Only operations (but not data members) of a class are accessible via
its proxy.
You can also pass an interface by value:
interface Time { /* ... */ };

interface Clock {

void set(Time t); // Note: NOT Time* !

};

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-36

Architectural Implications of Classes
• Classes enable client-side processing and avoid RPC

overhead.
• The price is that the behavior of (that is, the code for) class

operations must be available wherever the class is used.
• If you have a C++ class with operations, and want to use it

from a Java client, you must re-implement the operations of
the class in Java, with identical semantics.

• Classes with operations destroy language- and OS-
transparency (if they are passed by value).

• Use classes with operations only if you can control the
deployment environment for the entire application!

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-37

Classes Versus Structures
Classes can model structures, so why have structures?
Structures are more efficient because they can be stack-
allocated whereas classes are always heap-allocated.
Classes are slower to marshal than structures, and consume
more bandwidth on the wire.
Use classes if you need one or more features not provided by
structures:
• inheritance
• pointer semantics
• client-side local operations
• choice of local versus remote invocation

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-38

The :: Scope Qualification Operator
The :: scope resolution operator allows you to refer to types that
are not in the current scope or immediately enclosing scope:
module Types {

sequence<long> LongSeq;

};

module MyApp {

sequence<Types::LongSeq> NumberTree;

};

You can anchor a lookup explicitly at the global scope with a
leading :: operator: ::Types::LongSeq

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-39

Type Identifiers
Each Slice type has a unique internal identifier, call the type ID:
• For built-in types, the type ID is the name of the type, e.g. int or

string.
• For user-defined types, the type name is the fully-scoped name:

module Times {

struct Time { /* ... */ };

interface Clock { /* ... */ };

};

The type IDs for this definition are ::Times, ::Times::Time, and
::Times::Clock.

• For proxies, the type ID has a trailing *, so the type ID of the proxy for
the Clock interface is ::Times::Clock*.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-40

Operations on Object
All interfaces and classes implicitly inherit from Object:
sequence<string> StringSeq;

interface Object { // "Pseudo" Slice!

void ice_ping();

bool ice_isA(string typeID);

string ice_id();

StringSeq ice_ids();

// ...

};

• ice_ping provides a basic reachability test.
• ice_isA tests whether an interface is compatible with the supplied

type.
• ice_id returns the type ID of the interface.
• ice_ids returns all types IDs of the interface (the type ID of the

interface itself, plus the type IDs of all base interfaces).

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-41

Local Types
The APIs for the Ice run time are (almost) completely defined in Slice.
Most of the Slice definitions use the local keyword, for example:
module Ice {

local interface Communicator { /* ... */ };

};

local types cannot be accessed remotely; they define library objects.
local types do not inherit from Object. Instead, they derive from a
common base LocalObject.
Therefore, you cannot pass a local object where a non-local object is
expected and vice-versa.
You can define your own local interfaces, but there will rarely be a
need to do so.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-42

Metadata
Any Slice construct can be preceded by a metadata directive, for
example:
["java:type:java.util.LinkedList<Integer>"] sequence<int> IntSeq;

Metadata directives can also appear at global scope:
[["java:package:com.acme"]]

Global metadata directives must precede any Slice definitions in
a source file.
Metadata directives affect the code generator only.
Metadata directives never affect the client–server contract: no
matter how you add, remove, or change metadata directives, the
information that is exchanged on the wire is always the same.

Slice Interface Definition Language
Copyright © 2005-2010 ZeroC, Inc. 2-43

The slice2java Compiler
The slice2java command compiles one or more Slice definition files.
slice2java [options] file...

For example:
slice2java MyDefs.ice

This generates a number of source files, one for each class, using the
usual directory hierarchy for modules (which map to Java packages).
Commonly used options:
• -DNAME, -DNAME=DEF, -UNAME

Define or undefine preprocessor symbol NAME.
• -IDIR

Add DIR to the search path for #include directives.
• --impl

Create sample implementation files.

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

3. Assignment 1
Creating Slice Definitions

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc. 3-1

Exercise Overview
In this exercise, you will:
• gain hands-on experience of how to create Slice

definitions by designing interfaces for a simple
application.

By the completion of this exercise, you will have gained
experience in creating Slice definitions, the syntax and
semantics of the language, and how to use the slice2java
compiler.

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc. 3-2

Simple Remote File System
Functionality
• The file system consists of directories and files. The usual hierarchical

structure applies, so the file system has a single root directory that,
recursively, can contain other directories and files.

• Each directory and file has a name; names within the same parent
directory must be unique, as for a Windows or UNIX file system.

• Directories provide a way to list their contents.
• The content of files can be read and written. (Only text files are

supported, not binary files.)
• For the time being, the file system does not permit life cycle

operations, that is, clients can read and write the contents of files and
list the contents of directories, but cannot create or delete files or
directories.

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc. 3-3

What You Need to Do
Create Slice definitions for this application.
• In your lab1 directory, locate the file named Filesystem.ice.
• Place your definitions into this file. The directory also contains a

project file build.xml that you can use to compile your definitions.
Consider the following:
• What interfaces need to be present in your definitions, and how they

should relate to each other.
• What error conditions can arise and how to best inform clients of any

errors.
• What interaction patterns are clients likely to exhibit. Would it be

advisable to modify your definitions to accommodate such patterns
and, if so, why?

Once you have compiled your definitions, have a look at the generated
code. What parts of your specification do you recognize in the
generated code?

Assignment 1 Creating Slice Definitions
Copyright © 2005-2010 ZeroC, Inc. 3-4

One Possible Solution
module Filesystem {

exception IOError {

string reason;

};

interface Node {

idempotent string name();

};

sequence<string> Lines;

interface File extends Node {

idempotent Lines read() throws IOError;

idempotent void write(Lines text) throws IOError;

};

sequence<Node*> NodeSeq;

interface Directory extends Node {

idempotent NodeSeq list();

};

};

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

4. Client-Side
Slice-to-Java Mapping

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-1

Lesson Overview
• This lesson presents:

– the mapping from Slice to Java for the client side.
– the relevant APIs that are necessary to initialize and

finalize the Ice run time
– instructions for compiling a Java Ice client.

• By the end of this lesson, you will know how each Slice
type maps to Java and be able to write a working Ice
client.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-2

Client-Side Java Mapping
The client-side Java mapping defines rules for:
• initializing and finalizing the Ice run time
• mapping each Slice type into Java
• invoking operations and passing parameters
• handling exceptions
The mapping is fully thread-safe: you need not protect any Ice-
internal data structures against concurrent access.
The mapping rules are simple and regular: know them! The
generated files are no fun to read at all!
slice2java-generated code is platform independent.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-3

Initializing the Ice Run Time
public static void main(String[] args)
{

int status = 1;
Ice.Communicator ic = null;
try {

ic = Ice.Util.initialize(args);
// client code here...
status = 0;

} catch (Exception e) {
}
finally {

if (ic != null) {
try {

ic.destroy();
} catch (Exception e) {
}

}
}
System.exit(status);

}

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-4

Mapping for Identifiers
Slice identifiers map to corresponding Java identifiers:
struct Employee {

int number;

string name;

};

The generated Java contains:
public class Employee

implements java.lang.Cloneable, java.io.Serializable
{

public int number;

public String name;

// ...

}

Slice identifers that clash with Java keywords are escaped
with a _ prefix, so Slice while maps to Java _while.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-5

Mapping for Modules
Slice modules map to Java packages. The nesting of definitions
is preserved:
module M1 {

module M2 {

// ...

};

// ...

};

This maps to Java as:
package M1;

// Definitions for M1 here...

package M1.M2;

// Definitions for M1.M2 here...

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-6

Mapping for Built-In Types
The built-in Slice types map to Java types as follows:

Slice Type Java Type
bool boolean

byte byte

short short

int int

long long

float float

double double

string String

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-7

Mapping for Enumerations
Slice enumerations map unchanged to the corresponding
Java enumeration.
enum Fruit { Apple, Pear, Orange };

This maps to the Java definition:
public enum Fruit implements java.io.Serializable {

Apple,

Pear,

Orange;
// ...

}

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-8

Mapping for Structures
Slice structures map to Java classes with all data members public:
struct Employee {

string lastName;

string firstName;

};

This maps to:
public class Employee

implements java.lang.Cloneable, java.io.Serializable {

public String lastName;
public String firstName;

public Employee();

public Employee(String lastName, String firstName);

public boolean equals(java.lang.Object rhs);

public int hashCode();

public java.lang.Object clone();

};

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-9

Mapping for Sequences
By default, Slice sequences map to Java arrays.
sequence<Fruit> FruitPlatter;

No code is generated for the sequence. Use it as you would any
other array, for example:
Fruit[] platter = { Fruit.Apple, Fruit.Pear };

assert(platter.length == 2);

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-10

Custom Mapping for Sequences
You can change the mapping for a sequence to a custom type:
["java:type:java.util.LinkedList<Fruit>"]

sequence<Fruit> FruitPlatter;

The nominated type must implement the java.util.List<T> interface.
You can override members, parameter, or return values, for example:
sequence<Fruit> Breakfast;

["java:type:java.util.LinkedList<Fruit>"]

sequence<Fruit> Dessert;

struct Meal1 {

Breakfast b;

Dessert d;

};

struct Meal2 {

["java:type:java.util.LinkedList<Fruit>"] Breakfast b;

["java:type:java.util.Vector<Fruit>"] Dessert d;

};

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-11

Mapping for Dictionaries
Slice dictionaries map to Java maps:
dictionary<long, Employee> EmployeeMap;

No code is generated for this dictionary. Rather, slice2java
substitutes java.util.Map<Long, Employee> for EmployeeMap.
It follows that you can use the dictionary like any other Java map,
for example:
java.util.Map<Long, Employee> em =

new java.util.HashMap<Long, Employee>();

Employee e = new Employee();

e.number = 31;

e.firstName = "James";

e.lastName = "Gosling";

em.put(e.number, e);

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-12

Custom Mapping for Dictionaries
You can change the default mapping via metadata:
["java:type:java.util.LinkedHashMap<String, String>"]

dictionary<string, string> StringTable;

The type specified for the dictionary must support the
java.util.Map<K, V> interface.
As for sequences, you can override the type for individual
members, parameters, and return values.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-13

Mapping for Constants
Slice constants map to a Java interface with a value member that
stores the value.
const string Advice = "Don't Panic!";

enum Fruit { Apple, Pear, Orange };

const Fruit FavoriteFruit = Pear;

This maps to:
public interface Advice {

String value = "Don't Panic!";

}

public interface FavouriteFruit {

Fruit value = Fruit.Pear;

}

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-14

Mapping for User Exceptions
User exceptions map to Java classes derived from UserException.
exception GenericError {

string reason;

};

This maps to:
public class GenericError extends Ice.UserException {

public String reason;

public GenericError();

public GenericError(String reason);

public String ice_name() {

return "GenericError";

}

}

Slice exception inheritance is preserved in Java, so if Slice exceptions
are derived from GenericError, the corresponding Java exceptions
are derived from GenericError.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-15

Mapping for Run-Time Exceptions
Ice run-time exceptions are derived from Ice.LocalException.
In turn, Ice.LocalException derives from
java.lang.RuntimeException.
As for user exceptions, Ice.LocalException provides an
ice_name method that returns the name of the exception.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-16

Mapping for Interfaces
A Slice interface maps to a number of classes.
interface Simple {

void op();

};

This generates the following interfaces and classes:
interface Simple

final class SimpleHolder

interface SimplePrx

final class SimplePrxHolder

final class SimplePrxHelper

interface _SimpleOperations

interface _SimpleOperationsNC

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-17

The Proxy Interface
An instance of a proxy interface acts as the local ambassador for a
remote object. Invoking a method on the proxy results in an RPC call to
the corresponding object in the server.
interface Simple {

void op();

};

This generates:
public interface SimplePrx extends Ice.ObjectPrx {

public void op();

public void op(java.util.Map<String, String> __ctx);

}

The version without the __ctx parameter simply calls the version with
the __ctx parameter, supplying a default context.
SimplePrx derives from Ice.ObjectPrx, so all proxies support the
operations on Ice.Object.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-18

Methods on Ice.ObjectPrx
Ice.ObjectPrx is defined as follows:
package Ice;

public interface ObjectPrx {

boolean equals(java.lang.Object r);

int hashCode();

Identity ice_getIdentity();
boolean ice_isA(String __id);

String ice_id();
String[] ice_ids();

void ice_ping();

// ...

}

Every Ice object supports these operations.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-19

Proxy Helpers
For each interface, the compiler generates a helper class that allows
you to do type-safe down-casts:
public final class SimplePrxHelper extends Ice.ObjectPrxHelper {
public static SimplePrx checkedCast(Ice.ObjectPrx b);

public static SimplePrx checkedCast(
Ice.ObjectPrx b,

java.util.Map<String, String> ctx);

public static SimplePrx uncheckedCast(Ice.ObjectPrx b);

// ...

}

Both casts test an is-a relationship.
• A checkedCast checks with the server whether the object actually

supports the specified type and so requires sending a message.
• An uncheckedCast is a sledgehammer cast (so you had better get it

right!) but does not require sending a message.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-20

Mapping for Operations
Slice operations map to methods on the proxy interface.
interface Simple {

void op();

};

Invoking a method on the proxy instance invokes the operation
in the remote object:
SimplePrx p = ...;

p.op(); // Invoke remote op() operation

The mapping is the same, regardless of whether an operation is
a normal operation or has an idempotent qualifier.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-21

Mapping for Return Values and In-Parameters
Return values and In-parameters are passed either by value (for
simple types), or by reference (for complex types).
interface Example {

string op(double d, string s);

};

The proxy operation is:
String op(double d, String s);

You invoke the operation like any other Java method:
ExamplePrx p = ...;

String result = p.op(3.14, "Hello");

System.out.writeln(result);

• To pass a null proxy, pass a null reference.
• You can pass a null parameter for strings, sequences, and

dictionaries to pass the empty string, sequence, or dictionary.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-22

Mapping for Out-Parameters
Out-parameters are passed via a Holder type:
• Built-in types are passed as Ice.ByteHolder, Ice.IntHolder,

Ice.StringHolder, etc. User-defined types are passed as
<name>Holder.

All holder classes have a public value member, for example:
package Ice;

public final class StringHolder {
public StringHolder() {}
public StringHolder(String value) {

this.value = value;
}
public String value;

}

You pass a holder instance where an out-parameter is expected; when
the operation completes, the value member contains the returned
value.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-23

Exception Handling
Operation invocations can throw exceptions:
exception Tantrum { string reason; };

interface Child {

void askToCleanUp() throws Tantrum;

};

You can call askToCleanUp like this:
ChildPrx child = ...; // Get proxy...

try {

child.askToCleanUp(); // Give it a try...

} catch (Tantrum t) {

System.out.writeln("The child says: " + t.reason);

}

Exception inheritance allows you to handle errors at different levels with
handlers for base exceptions at higher levels of the call hierarchy.
The value of out-parameters if an exception is thrown is undefined.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-24

Mapping for Classes
Slice classes map to Java classes:
• For each Slice member (if any), the class contains a corresponding

public data member.
• If the class has operations, it is abstract and derives from the

_<name>Operations and _<name>OperationsNC interfaces. These
interfaces contain method definitions corresponding to the Slice
operations.

• The class has a default constructor and a “one-shot” constructor
with one parameter for each class member.

• Slice classes without a base class derive from Ice.Object.
• Slice classes with a base class derive from the corresponding base

class.
• All classes support the operations on Ice.Object.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-25

Inheritance from Ice.Object
Classes support the methods on Ice.Object:
package Ice;

public interface Object
{

void ice_ping(Current current);
boolean ice_isA(String s, Current current);
String[] ice_ids(Current current);
String ice_id(Current current);

int ice_hash();
void ice_preMarshal();
void ice_postUnmarshal();

}

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-26

Abstract Classes
Classes that inherit methods from the _<name>Operations interface
are abstract, so they cannot be instantiated.
To allow abstract classes to be instantiated, you must create a class
that derives from the compiler-generated class. The derived class must
provide implementations of the operations:
public class TimeOfDayI extends TimeOfDay {

public String format(Ice.Current current) {
DecimalFormat df

= (DecimalFormat)DecimalFormat.getInstance();
df.setMinimumIntegerDigits(2);
return new String(df.format(hour) + ":" +

df.format(minute) + ":" +
df.format(second));

}
}

By convention, implementations of abstract classes have the name
<class-name>I.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-27

Class Factories
The Ice run time does not know how to instantiate an abstract class
unless you tell it how to do that:
module Ice {

local interface ObjectFactory {

Object create(string type);

void destroy();

};

// ...

};

You must implement the ObjectFactory interface and register a
factory for each abstract class with the Ice run time.
• The run time calls create when it needs to create a class instance.
• The run time calls destroy when you destroy the communicator.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-28

Factory Registration
Once you have created a factory class, you must register it with the Ice
run time for a particular type ID:
module Ice {

local interface Communicator {

void addObjectFactory(ObjectFactory factory,

string id);

ObjectFactory findObjectFactory(string id);

// ...

};

};

When the run time needs to unmarshal an abstract class, it calls the
factory’s create method to create the instance.
It is legal to register a factory for a non-abstract Slice class. If you do
this, your factory overrides the one that is generated by the Slice
compiler.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-29

Default Factory
You can register a factory for the empty type ID as a default factory.
The Ice run time locates factories in the following order:
1. Look for a factory registered for the specific type ID. If one exists,

call create on that factory. If the return value is non-null, return the
result, otherwise try step 2.

2. Look for the default factory. If it exists, call create on the default
factory. If the return value is non-null, return the result, otherwise
try step 3.

3. Look for a Slice-generated factory (for non-abstract classes). If it
exists, instantiate the class.

4. Throw NoObjectFactoryException.
If you have both a type-specific factory and a default factory, you can
return null from the type-specific factory to redirect class creation to the
default factory.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-30

Stringified Proxies
The simplest stringified proxy specifies:
• host name (or IP address)
• port number
• an object identity
For example:
fred:tcp -h myhost.dom.com -p 10000

General syntax:
<identity>:<endpoint>[:<endpoint>...]

For TCP/IP, the endpoint is specified as:
tcp -h <host name or IP address> -p <port number>

To convert a stringified proxy into a live proxy, use:
Communicator.stringToProxy.

A null proxy is represented by the empty string.

Client-Side Slice-to-Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 4-31

Compiling and Running a Client
To compile a client, you must:
• compile the Slice-generated source files(s)
• compile your application code
For Linux:
$ mkdir classes

$ javac -d classes -classpath \

> classes:$ICEJ_HOME/lib/Ice.jar \

> Client.java generated/Demo/*.java

To compile and run the client, Ice.jar must be in your
CLASSPATH.

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

5. Assignment 2
Creating an Ice Client

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc. 5-1

Exercise Overview
In this exercise, you will:
• create an Ice client to access a server that implements

the filesystem developed in Assignment 1.
By the completion of this exercise, you will have gained
experience in the Java language mapping, how to initialize
and finalize the Ice run time, how to construct proxies, and
how to invoke operations and handle exceptions.

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc. 5-2

Creating a Client for the Remote Filesystem

• In your lab2 directory, you will find a build.xml file to build
a client and a server.

• The server is complete and implements the file system
defined in Filesystem.ice.

• The server listens on port 10000 for incoming requests;
the identity of the root directory object is “RootDir”.

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc. 5-3

What You Need to Do
The client code can be found in Client.java.
1. In the body of main, initialize the Ice run time, create a

proxy to the root directory, and pass that proxy to the
listRecursive function.

2. Following the call to listRecursive, shut down the Ice run
time.

3. The body of listRecursive is empty, so you need to
provide an implementation.

4. Test your client against the provided server.
5. Try running the client without first starting the server.
6. Change the client to use the identity “Fred” for the root

directory.

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc. 5-4

The main Method
Note that the code catches and handles any exceptions,
and that the communicator is destroyed only if it was
successfully initialized.

Assignment 2 Creating an Ice Client
Copyright © 2005-2010 ZeroC, Inc. 5-5

The listRecursive Method
Note that the code, for each proxy returned by list, uses
an uncheckedCast to down-cast the proxy. This avoids
the overhead of using a checkedCast, which requires a
remote message.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

6. Server-Side
Java Mapping

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-1

Lesson Overview
• This lesson presents:

– the mapping from Slice to Java relevant to the server
side.

– the relevant APIs that are necessary to initialize and
finalize the Ice run time

– how to implement and register object implementations.
• By the end of this lesson, you will be able to write a

working Ice server.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-2

Server-Side Java Mapping
All of the client-side Java mapping also applies to the
server side.
Additional server-side functionality you must know about:
• how to initialize and finalize the server-side run time
• how to implement servants
• how to pass parameters and throw exceptions
• how to create servants and register them with the run

time

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-3

Initializing the Ice Run Time
public class Server {

public static void
main(String[] args)
{

int status = 1;
Ice.Communicator ic = null;
try {

ic = Ice.Util.initialize(args);
// server code here...
status = 0;

} catch (Exception e) {
}
if (ic) {

try {
ic.destroy();

} catch (java.lang.Exception ex)
}

}
System.exit(status);

}
}

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-4

Server-Side Initialization
Servers must create at least one object adapter, activate that adapter,
and then wait for the Ice run time to shut down:
ic = Ice.Util.initialize(args);

Ice.ObjectAdapter adapter

= ic.createObjectAdapterWithEndpoints(

"MyAdapter", "tcp -p 10000");

// Instantiate and register one or more servants here...

adapter.activate();

ic.waitForShutdown();

An object adapter provides one or more endpoints at which the server
listens for incoming requests. An adapter has a name that must be
unique within its communicator.
Adapters must be activated before they start accepting requests.
You must call waitForShutdown from the main thread to wait for the
server to shut down (or otherwise prevent the main thread from exiting).

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-5

Mapping for Interfaces
Interfaces map to skeleton classes with an abstract method for each
Slice operation:
module M {

interface Simple {
void op();

};

};

This generates:
package M;
public interface _SimpleOperations
{

void op(Ice.Current current);
}
public interface Simple extends Ice.Object,

_SimpleOperations,
_SimpleOperationsNC;

public abstract class _SimpleDisp
extends Ice.ObjectImpl
implements Simple;

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-6

Mapping for Interfaces (1)
You must implement all abstract methods that are inherited from
the skeleton class.
You can add whatever else you need to support your
implementation:
• constructors and finalizers
• public or private methods
• public or private data members
• other base interfaces

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-7

Mapping for Parameters
Server-side operation signatures are identical to the client-side
operation signatures (except for a trailing parameter):
• In-parameters are passed by value or by reference.
• Out-parameters are passed by holder types.
• Return values are passed by value or by reference.
• Every operation has a single trailing parameter of type

Ice.Current.

string op(int a, string b, out float c, out string d);

Maps to:
String op(int a, String b,

Ice.FloatHolder c, Ice.StringHolder d,

Ice.Current __current);

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-8

Throwing Exceptions
exception GenericError { string reason; };

interface Example {

void op() throws GenericError;

};

You could implement op as:
public void op(Ice.Current c) throws GenericError

{

throw new GenericError("something failed");

}

Do not throw Ice run-time exceptions. You can throw
ObjectNotExistException, OperationNotExistException, or
FacetNotExistException, which are returned to the client unchanged.
But these have specific meaning and should not be used for anything
else.
If you throw any other run-time exception, the client will get an
UnknownLocalException or UnknownException.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-9

Tie Classes
Tie classes are an alternative mechanism for implementing servants.
The --tie option for slice2java generates tie classes in addition to the
normal server-side code.
Tie classes replace inheritance with delegation. This way, your implementation
class need not inherit from the skeleton class:

Use the tie mapping when your implementation class must inherit from some
other application class (and therefore cannot be derived from the skeleton
class).

_NodeDisp
«interface»

_NodeOperations
«interface»

_NodeTie NodeI

Skeleton
Class

Tie
Class

Implementation
Class

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-10

Creating an ObjectAdapter
Each server must have at least one object adapter. You create an
adapter with:
local interface ObjectAdapter;

local interface Communicator {

ObjectAdapter createObjectAdapter(string name);

ObjectAdapter createObjectAdapterWithEndpoints(

string name,

string endpoints);

// ...

};

The endpoints at which the adapter listens are taken from configuration
(first version), or from the supplied argument (second version).
Example endpoint specification:
tcp -p 10000:udp -p 10000:ssl -p 10001

Endpoints have the general form:
<protocol> [-h <host>] [-p <port>] [-t timeout] [-z]

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-11

Object Adapter States
An object adapter is in one of three possible states:
• Holding (initial state after creation)

The adapter does not read incoming requests off the wire (for TCP
and SSL) and throws incoming UDP requests away.

• Active
The adapter processes incoming requests. You can transition freely
between the Holding and Active state.

• Inactive
This is the final state, entered when you initiate destruction of the
adapter:
– Requests in progress are allowed to complete.
– New incoming requests are rejected with a

ConnectionRefusedException.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-12

Controlling Adapter State
The following operations on the adapter relate to its state:
local interface ObjectAdapter {

void activate();

void hold();

void deactivate();
void waitForHold();
void waitForDeactivate();
void destroy();

// ...

};

The operations to change state are non-blocking.
If you want to know when a state transition is complete, call
waitForHold or waitForDeactivate as appropriate.
destroy blocks until deactivation completes.
You can re-create an adapter with the same name once destroy
completes.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-13

Object Identity
Each Ice object has an associated object identity.
Object identity is defined as:

struct Identity {

string name;

string category;

};

• The name member gives each Ice object a unique name.
• The category member is primarily used in conjunction with default

servants and servant locators. If you do not use these features, the
category is usually left as the empty string.

The identity must be unique within the object adapter: no two servants
that incarnate an Ice object can have the same identity.
The combination of name and category must be unique.
An identity with an empty name denotes a null proxy.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-14

Stringified Object Identity
Two helper functions on the communicator allow you to convert
between identities and strings:
interface Communicator

{

Identity stringToIdentity(String ident);

String identityToString(Identity id);

// ...

}

Stringified identities have the form <category>/<name>, for example:
person/fred

If no slash is present, the string is used as the name, with the category
assumed to be empty.
The object adapter has a getCommunicator method that returns the
communicator. You use the communicator to convert between strings
and object identities.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-15

The Active Servant Map (ASM)
Each adapter maintains a map that maps object identities to servants:

• Incoming requests carry the object identity of the Ice object that is
the target.

• The ASM allows the server-side run time to locate the correct
servant for the request.

• Object identities must be unique per ASM.

Endpoint
Joe

Client Server

212.8.7.33

Object Adapter

Servant

Proxy

ASM

Joe

Fred

Carl

212.8.7.33 Joe

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-16

Activating Servants
To make a servant available to the Ice run time, you must activate it.
This adds an identity–servant pair to the ASM:
local interface ObjectAdapter {

Object* add(Object servant, Identity id);

Object* addWithUUID(Object servant);

// ...

};

Both operations return the proxy for the servant, for example:
SimplePrx sp = SimplePrxHelper.uncheckedCast(

adapter.add(new SimpleI("hello"),

adapter.getCommunicator().

stringToIdentity("fred")));

As soon as a servant is added to the ASM, the run time will dispatch
requests to it (assuming that the adapter is activated).
addWithUUID adds the servant to the ASM with a UUID as the name,
and an empty category.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-17

Creating Proxies
You can create a proxy without activating a servant for the proxy:
interface ObjectAdapter {

// ...

Object* createProxy(Identity id);

};

The returned proxy contains the passed identity and the
adapter’s endpoints.
Note that the return type is Object* so, typically, you need to
downcast the proxy before you can use it.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-18

The Ice.Application Class
Ice.Application is a utility class that makes it easy to initialize and finalize
the Ice run time.
public abstract class Application

{

public Application();

public final int main(String appName, String[] args);

public final int main(String appName, String[] args,

String configFile);

public final int main(String appName, String[] args,

InitializationData id);

public abstract int run(String[] args);

public static Communicator communicator();

public static String appName();

// ...

}

You call Application.main from the real main, and implement the body of
your client or server in the run method.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-19

Shutdown Hook
Ice.Application provides control of the JVM shutdown hook:
package Ice;

public enum SignalPolicy { HandleSignals, NoSignalHandling }
public abstract class Application

{
public Application();
public Application(SignalPolicy signalPolicy);
// ...
synchronized public static void destroyOnInterrupt();
synchronized public static void shutdownOnInterrupt();
synchronized public static void defaultInterrupt();

synchronized public static boolean interrupted();

}

The default behavior on interrupt is to destroy the communicator,
allowing all currently running operation invocations to complete first.

Server-Side Java Mapping
Copyright © 2005-2010 ZeroC, Inc. 6-20

Compiling and Running a Server
To compile a client, you must:
• compile the Slice-generated source files(s)
• compile your application code
For Linux:
$ mkdir classes

$ javac -d classes -classpath \

> classes:$ICEJ_HOME/lib/Ice.jar \

> Server.java \

> generated/Demo/*.java

To compile and run the server, Ice.jar must be in your CLASSPATH.
Note that these commands are the same as for the client side—you
need not supply server-specific options or use a server-specific class
file or library.

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

7. Assignment 3
Creating an Ice Server

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc. 7-1

Exercise Overview
In this exercise, you will:
• create an Ice server that implements the filesystem we

developed in Assignment 1.

By the end of this exercise, you will have gained experience
in how to implement servants and how to use the
Ice.Application class to initialize and finalize the Ice run
time.

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc. 7-2

Creating a Server for the Remote Filesystem

• In your lab3 directory, you will find a build.xml file to build
a client and a server.

• The client is complete and implements the solution shown
in Assignment 2.

• Use this client to test your server.

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc. 7-3

What You Need to Do
1. Find Server.java, Filesystem/FileI.java, and

Filesytem/DiretoryI.java. The places in the code where you need
to add something are marked with a // MISSING comment.

2. Have a look at the code in DirectoryI.java . Add the new directory to
the parent’s _contents member and then add the new directory to the
ASM.

3. Have a look at the code in FileI.java . Implement the read and write
methods. Use the relevant member variable to store the contents of the
file.

4. Implement the missing parts of Server.java.
5. Use the provided client to test your server and check that the contents of

the file system are as expected.

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc. 7-4

The Server Class

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc. 7-5

The Directory Class

Assignment 3 Creating an Ice Server
Copyright © 2005-2010 ZeroC, Inc. 7-6

The FileI Class

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc.

8. Properties
and Configuration

Ice Programming with Java

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-1

Lesson Overview
• This lesson presents:

– how to use properties to control various aspects of the
Ice run time.

– how to use properties in your own applications.
• By completion of the chapter, you will know how the Ice

run time can be configured using properties, how property
values are evaluated, and how to use the property
mechanism to configure your own applications.

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-2

Ice Properties
The Ice run time and its various subsystems are configured using properties.
• Properties are name–value pairs, e.g.:

Ice.UDP.SndSize=65535

• By convention, Ice property names use the syntax
<application>.<category>[.<sub-category>]

For your own properties, you can use any number of categories and
sub-categories (including none).

• Some property prefixes are reserved for Ice:
Ice, IceBox, IceGrid, IcePatch2, IceSSL, IceStorm, Freeze,
and Glacier2.

• Property names are sequences of characters, excluding space (‘ ’),
hash (‘#’), and (‘=’).

• Property values are sequences of characters, excluding hash (‘#’).

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-3

Configuration Files
Properties are often set in a configuration file.
• Configuration files contain one property setting per line, e.g.:

Example config file

Ice.MessageSizeMax = 2048 # 2MB message size limit

Ice.Trace.Network=3 # Trace all network activity

Ice.Trace.Protocol= # No protocol tracing

• Leading and trailing white space around a property value are
ignored, as are empty lines. Backslashes must be escaped as \\.

• The # character introduces a comment to the end of the current line.
• If a property is set more than once, the last setting takes effect.
• Assigning nothing to a property unsets the property.
• You can set the ICE_CONFIG environment variable to the path of a

configuration file. The file is read when you create a communicator.
• Configuration files use UTF-8 encoding.

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-4

Setting Ice Properties on the Command Line
You can set Ice properties on the command line, e.g.:

java Server --Ice.UDP.SndSize=65535 --Ice.Trace.Network

• --Ice.Trace.Network is the same as
--Ice.Trace.Network=1

• --Ice.Trace.Network= is the same as
--Ice.Trace.Network=’’

• The --Ice.Config property determines the path of a configuration file:
--Ice.Config=/opt/Ice/default.config

• --Ice.Config overrides the setting of the ICE_CONFIG environment
variable.

• If you set properties on the command line, and the same properties are
set in a configuration file, the properties on the command line override
the ones in the configuration file.

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-5

Ice Initialization
Ice.Util.initialize accepts an argument holder:
Communicator initialize(StringSeqHolder args);

The function scans the argument vector for any Ice-specific options and
returns an argument vector with those options removed.
Example:
java Server --Ice.Config=cfg --Ice.Trace.Network=3 -o f

After calling Ice.Util.initialize, the cleaned-up vector contains:
-o f

You should parse the command line for your application after calling
Ice.Util.initialize. That way, you do not need to write code to skip
Ice-related command-line options.
If you want the program name to appear in trace and log messages, set
Ice.ProgramName before initializing the communicator.

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-6

Reading Properties Programatically
You can access property values programmatically:
dictionary<string, string> PropertyDict;

local interface Properties {

string getProperty(string key);

string getPropertyWithDefault(string key,

string value);

int getPropertyAsInt(string key);

int getPropertyAsIntWithDefault(string key,

int value);

PropertyDict getPropertiesForPrefix(string prefix);

// ...

};

local interface Communicator {

Properties getProperties();

// ...

};

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-7

Using InitializationData
Ice.Util.initialize is overloaded:
static Communicator initialize();

static Communicator initialize(String[] args);

static Communicator initialize(StringSeqHolder ah);

static Communicator initialize(InitializationData id);

static Communicator initialize(String[] args, InitializationData id);

static Communicator initialize(StringSeqHolder ah, InitializationData id);

final class InitializationData implements Cloneable

{

public InitializationData();

public java.lang.Object clone();
public Properties properties;
public Logger logger;
public Stats stats;
public ThreadNotification threadHook;
public ClassLoader classLoader;
public Dispatcher dispatcher;

}

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-8

Command-Line Application Properties
To be able to set application-specific properties on the command line,
you must initialize a property set before you initialize the communicator:
public static void main(String[] args)
{

Ice.InitializationData initData = new Ice.InitializationData();

initData.properties = Ice.Util.createProperties();

args = initData.properties.parseCommandLineOptions(

"Filesystem", args);

// Parse other application-specific options here...

Ice.Communicator communicator =
Ice.Util.initialize(args, initData);

}

• createProperties creates an empty property set.
• parseCommandLineOptions converts properties with the specified prefix,

strips them from args, and returns the remaining arguments.

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-9

Commonly-Used Ice Properties
• Ice.Trace.Network (0-3)

Trace network activity.
• Ice.Trace.Protocol (0 or 1)

Trace protocol messages.
• Ice.Warn.Dispatch

Print warnings for unexpected server-side exceptions.
• Ice.Warn.Connections (0 or 1)

Print warnings if connections are lost unexpectedly.
• Ice.MessageSizeMax (value in kB)

Set maximum size of messages that can be sent and received.
• Ice.ThreadPool.Server.Size

Set the number of threads in the server-side thread pool.
See the Ice manual for a complete list of properties.

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-10

Converting Properties to Proxies
A convenience operation on the communicator allows you to convert a
property value to a proxy.
ObjectPrx p = comunicator.propertyToProxy("App.Proxy");

This reads the stringified proxy from the property App.Proxy.
App.Proxy is the base name of the property. You can define additional
aspects of the proxy in separate subordinate properties. For example:
• App.Proxy.CollocationOptimized

• App.Proxy.ConnectionCached

• App.Proxy.EndpointSelection

The subordinate properties of the property group define the local
behavior of the proxy, such as how to select endpoints, prefer secure
transports over non-secure ones, and so on.

Properties and Configuration
Copyright © 2005-2010 ZeroC, Inc. 8-11

Object Adapter Properties
Object adapters support a number of configuration properties.
The adapter’s name is used as the prefix for its properties:
ObjectAdapter adapter =

communicator.createObjectAdapter("MyAdapter");

Commonly-used adapter properties:
• MyAdapter.AdapterId

• MyAdapter.Endpoints

• MyAdapter.ProxyOptions

• MyAdapter.PublishedEndpoints

• MyAdapter.Router

• MyAdapter.ThreadPool

Properties must be defined in the communicator’s property set prior to
calling createObjectAdapter.

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

9. Assignment 4
Using Properties

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc. 9-1

Exercise Overview
In this exercise, you will:
• modify the client we created in Assignment 2 to use

application-specific properties.

By the end of this exercise, you will have gained experience
in how to use properties to configure the Ice run time as well
as your own applications.

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc. 9-2

Adding an Application-Specific Property

• In your lab4 directory, you will find a build.xml file to
build a client and a server.

• Both client and server are complete.
• You will modify the client to use application-specific

properties.

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc. 9-3

What You Need to Do
1. Modify the client such that it picks up its property settings

from a configuration file. Add the missing initialization of base
to denote the proxy to the root directory.

2. Modify the run method such that it retrieves the property
setting and sets the _showSize member variable accordingly.

3. Create a configuration file config and add a setting for both
properties to it.

4. Modify main such that you can invoke the client.
5. Change the proxy for the root directory to port 9999 and run

the client.
6. Change the proxy for the root directory to use port 10000

again. Now run the client with --Ice.Trace.Protocol=1.

Assignment 4 Using Properties
Copyright © 2005-2010 ZeroC, Inc. 9-4

Using Properties
The missing line of code to initialize the _showSize member is:
_showSize = communicator().getProperties().

getPropertyAsInt("Filesystem.ShowSize") != 0;

The code to add at the beginning of main so the properties can be set on the
command line is:
Ice.InitializationData initData = new Ice.InitializationData();

initData.properties = Ice.Util.createProperties();

args = initData.properties.parseCommandLineOptions("Filesystem",
args);

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

10. Multi-Threaded Ice

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc. 10-1

Lesson Overview
• This lesson presents:

– the threading models available with the Ice run time and
how to configure them.

– some general threading strategies that you can use in your
servers

• By the completion of the chapter, you will understand how
the Ice run time uses threads and how to implement a
simple thread-safe server.

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc. 10-2

Ice Threading Model
Ice uses a thread pool concurrency model.
For each communicator, Ice maintains:
• a client-side thread pool to process replies for outgoing

requests and to dispatch incoming requests on bi-
directional connections.

• a server-side thread pool to dispatch incoming
requests.

You can create additional per-adapter thread pools.
The default size for both client- and server-side thread
pools is 1.

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc. 10-3

Thread Pool Configuration
By default, the client- and server-side thread pools contain a single
thread.
You can configure the pool size:
• Ice.ThreadPool.Client.Size=<num>

The client-side thread pool can normally be left at 1, unless you need
to support concurrent asynchronous or bi-directional callbacks (or if
these callbacks might block).

• Ice.ThreadPool.Server.Size=<num>

The server-side thread pool determines how many requests can be
processed concurrently by the server.

Both properties set the initial number of threads in the pool.

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc. 10-4

Thread Pool Configuration (1)
Thread pools initially contains the number of threads specified by
Ice.ThreadPool.Client.Size and
Ice.ThreadPool.Server.Size.
You can also set a maximum size:
• Ice.ThreadPool.Client.SizeMax=<num>

• Ice.ThreadPool.Server.SizeMax=<num>

These properties allow a thread pool to temporarily grow larger than its
initial size due to increased demand.
During idle periods, the size of a pool can shrink to just one thread. The
idle timeout is specified by
Ice.ThreadPool.Client.ThreadIdleTime and
Ice.ThreadPool.Server.ThreadIdleTime.

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc. 10-5

Thread Pool Configuration (2)
• Ice.ThreadPool.Client.SizeWarn=<num>

Ice.ThreadPool.Server.SizeWarn=<num>

These properties log a warning once the number of threads in a
pool exceeds the specified threshold.

• Ice.ThreadPool.Client.StackSize=<bytes>

Ice.ThreadPool.Server.StackSize=<bytes>

These properties set the stack size of the threads in a pool (byte
units).
The default value is zero, which gives threads the default stack size
as determined by the OS.

Multi-Threaded Ice
Copyright © 2005-2010 ZeroC, Inc. 10-6

Thread Safety
All APIs in the Ice run time are thread safe:
• You never have to lock something against concurrent access on

behalf of the run time.
• Ice run-time APIs are deadlock free, so you can call any Ice API at

any time and from any thread without fear of deadlock.
Exception:
Do not call waitForShutdown, waitForDeactivate, or
waitForHold from within an executing operation on the
corresponding adapter. If you do, you will deadlock.

Access to collections (sequences and dictionaries) is not interlocked. If
you manipulate the same collection concurrently from different threads,
you must establish a critical region yourself.
For multi-threaded servers, you must protect your own application-
specific data against concurrent access.

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

11. Assignment 5
Thread Safety

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc. 11-1

Exercise Overview
In this exercise, you will:
• modify the server we created in Assignment 3 to be

thread-safe.

By the completion of this exercise, you will have gained
experience in how to use synchronization to make a server
implementation thread-safe, and will know how to create
threads to make concurrent invocations.

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc. 11-2

Thread Safety
• The file system server is not thread-safe.
• Modify the server to support concurrent invocations by

clients and modify the client to make concurrent
invocations on the server.

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc. 11-3

What You Need to Do
1. Modify the server to provide mutual exclusion.
2. Add trace statements to the beginning and end of list: your code

should print the calling thread’s ID as it enters and leaves list.
3. For testing purposes, add a statement to list that causes the

calling thread to sleep for one second.
4. Modify the client to create three threads, each of which will call

listRecursive.
5. At the end of Client.run, add code to create three threads of

type ListThread.
6. Add code to join with the three threads you created in step 5.
7. Run client and server in separate windows and examine the trace

produced by each program.

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc. 11-4

Server Modifications
• To make the server thread-safe, we need to make Slice

operations synchronized.
• The operations for which this is necessary are read, write

and list.
• It is also necessary to acquire a lock in addChild: without

this lock, if the server concurrently instantiates nodes from
different threads, the _contents member of the parent can
be corrupted.

Assignment 5 Thread Safety
Copyright © 2005-2010 ZeroC, Inc. 11-5

Client Modifications
• The client simply creates three threads that each call

listRecursive and joins with these threads.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

12. Object Life Cycle

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-1

Lesson Overview
• Object life cycle refers to the issues that surround

creation and destruction of objects.
• This lesson shows you how you can create and destroy

Ice objects in response to client requests, and how to
ensure that these operations are thread-safe. The lesson
also discusses issues regarding the uniqueness of object
identities, and how to deal with objects that are
abandoned by clients.

• By the completion of this lesson, you will have a
thorough understanding of how to provide life cycle
operations in a thread-safe manner.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-2

Object Creation
Object creation typically relies on the factory pattern:
exception NameInUse {};

interface Directory extends Node {
Directory* createDir(string name)

throws NameInUse;

};

• The factory operation creates a new Ice object as a side-effect and
returns the proxy to the newly-created object.

• As far as the Ice run time is concerned, a factory operation is no
different from any other operation.

• The factory operation behaves like a constructor and can accept
whatever arguments are necessary to create the new object.

• Often, factory operations also throw exceptions to indicate errors that
might be caused by invalid arguments or that are detected by the
operation implementation.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-3

Object Creation and Thread Safety
If clients can call create concurrently, you must interlock:

public synchronized FilePrx
createFile(String name, Ice.Current c)

throws NameInUse
{

if(!nameIsValid(name))
{

throw NameInUse();
}

// Instantiate servant, add to ASM,
// and return proxy here...

}

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-4

The Current Object
Every operation invocation is passed an object of type Ice::Current:

dictionary<string, string> Context;

enum OperationMode {
Normal, \Nonmutating, \Idempotent

};

local struct Current {
ObjectAdapter adapter;
Connection con;
Identity id;
string facet;
string operation;
OperationMode mode;
Context ctx;
int requestId;

};

The Current object provides information about the current invocation.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-5

Object Destruction
To destroy an object, add an operation that instructs the object to
commit suicide:
exception DirNotEmpty {};

interface Node {
void destroy() throws DirNotEmpty;

};

• The implementation of destroy removes the servant from the ASM
and destroys whatever resources are held by the servant.

• Clients invoking on the proxy for the destroyed object receive
ObjectNotExistException.

• As far as the Ice run time is concerned, destroy is an ordinary
operation without special significance.

• Do not add destroy to the factory. If you do, you need to keep track
of which factory created what object.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-6

Implementing Object Destruction
The object adapter provides a remove operation that removes an entry
from the ASM:
local interface ObjectAdapter {

Object remove(Identity id);
// ...

};

remove breaks the link between the object identity and the servant,
effectively destroying the Ice object.
• The operation returns the servant that was removed.
• Calling remove on an object identity that is not in the ASM raises

NotRegisteredException.
• If the server code does not hold a reference to the servant elsewhere,

the servant becomes eligible for garbage collection as soon as the
last executing operation leaves the servant.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-7

Object Destruction and Thread Safety
You must avoid a race condition if destroy can be called concurrently:
public synchronized void

destroy(Ice.Current c)

{
if(_destroyed)

throw new Ice.ObjectNotExistException();
// Remove any servant-specific state here...
c.adapter.remove(c.id);
_destroyed = true;

}

public synchronized void
write(String[] text, Ice.Current c) throws IOError
{

if(_destroyed)
throw new Ice.ObjectNotExistException();

// ...

}

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-8

When to Remove Servant State?
Avoid removing servant state in the servant’s finalizer:
• destroy often must perform clean-up that can fail, such as

closing network connections or flushing files.
If you delay physical removal of servant resources until the
finalizer runs and something goes wrong, you end up with
inconsistent state: destroy has completed successfully, but
physical servant state is still there!

• If anything goes wrong in the finalizer, the finalizer cannot
throw exceptions. (The best it can do is log the error.)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-9

Object Identity and Uniqueness
The Ice object model assumes that Ice objects have globally-unique
identities.
• If you use UUIDs as object identities, this is guaranteed to be the

case.
• If you use application-specific data as object identities, this is not

guaranteed—the application must enforce sufficient uniqueness.
Technically, object identities must be unique per object adapter.
Object identity is embedded in the proxy for an object and sent over the
wire with each invocation.
If object identities are globally unique, ObjectNotExistException is
reliable:
• Once a client receives ObjectNotExistException from an object, all

future attempts to contact the object will either fail, or also raise
ObjectNotExistException.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-10

Object Identity and Uniqueness (1)
interface File {

void destroy();
// ...

};

interface FileFactory {
File* create(string pathname);

};

Assume that the path name is used as the object identity. A client can now do:
FileFactoryPrx ff = ...;
FilePrx f = ff.create("/fred");
// Write to new file...
// Pass f to some other process...

// Later:
f.destroy();
f = ff.create("/fred");
// Write to new file...

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-11

Object Identity and Uniqueness (2)
FileFactoryPrx ff = ...;
FilePrx f = ff.create("/fred");

// Pass proxy to some other process...

// Later...

f.destroy();

// Still later...

// Use same identity for different type of object:
ThingFactoryPrx tf = ...;
ThingPrx t = tf.create("/fred");

If a client invokes on the File proxy after the object is reincarnated as a Thing,
it may get an OperationNotExistException, MarshalException, or even
undefined behavior!

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-12

Uniqueness Recommendations
Consider using UUIDs as object identity. UUIDs are convenient
because they make name clashes impossible.
If you use application-assigned object identity, pay attention to
uniqueness:
• Ideally, do not ever re-use an identity.
• If you re-use identities, write your application to cope with this:

• Avoid storing proxies in clients beyond their “use-by date.”
• Do not build semantics into your application that expect

ObjectNotExistException to be a definitive death certificate.
• Use separate namespaces for object identities for different

object types (for single object adapters), or
• Use different object adapters for different types of objects.

• If you want to use IceGrid’s well-known objects, you must use an
identity that is unique within the IceGrid domain.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-13

Dealing with Stale Objects
Consider stateful client–server interactions, such as for an online
shop:
• The client creates a shopping cart object via a factory.
• Purchases are added to the cart by invoking operations on the

cart.
• When the client is finished, and presses the “Buy” button, the

order is processed and the cart is destroyed.
What happens if the client never finishes the purchasing process
or crashes?
The server holds onto resources on behalf of the client so,
unless the server does something in this case, it will eventually
run out of resources.

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-14

Dealing with Stale Objects (1)
Basic approach for cleaning up stale objects:
• Instead of creating objects directly, each client creates a single

session object.
• The session object is the object factory that allows the client to

create all the objects it needs.
• The session keeps track of which objects were created.
• The session offers a refresh operation. The client is expected to

call refresh every n seconds.
• If the client fails to call refresh for more than n seconds, the server

destroys the session object, and all objects created by that session.
This approach guarantees:
• resources will be reclaimed if a client crashes
• resources are not reclaimed prematurely (while still being used)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-15

interface SomeObject {
// Lots of operations here...

void destroy();

};

interface Session { // One session per client
SomeObject* create(/* params */);
idempotent string getName();
void refresh();
idempotent void destroy();

};
interface SessionFactory { // Singleton

Session* create(string name);

};

Dealing with Stale Objects (2)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-16

The reaper thread:
• maintains a list of existing sessions
• provides an add operation so sessions can be added
• runs an infinite loop:

• sleep for n seconds
• get the current time
• for each existing session, if the session’s timestamp is older than

n seconds, call destroy on the session and remove the session
from the list

• if a call to destroy raises ObjectNotExistException, remove
the session from the list

Dealing with Stale Objects (3)

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-17

Dealing with Stale Objects (4)
class SessionFactoryI extends _SessionFactoryDisp

{

public SessionFactoryI(ReapThread r)

{

_reaper = r;

}

public SessionPrx create(String name, Ice.Current c)

{

SessionI session = new SessionI();

SessionPrx proxy = SessionPrxHelper.uncheckedCast(

c.adapter.addWithUUID(session));

_reaper.add(proxy, session);

return proxy;

}

private ReapThread _reaper;

}

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-18

Dealing with Stale Objects (5)
class SessionI extends _SessionDisp

{
public synchronized SomeObjectPrx
create(Ice.Current c);

public synchronized void
destroy(Ice.Current c);

public void
refresh(Ice.Current c);

public long
timestamp();

private long _timestamp = System.currentTimeMillis();
private boolean _destroyed = false;
private java.util.LinkedList<SomeObjectPrx> _objs =

new java.util.LinkedList<SomeObjectPrx>();
}

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-19

Dealing with Stale Objects (6)
The server’s main program:
• instantiates an object adapter
• creates the reaper thread and starts it
• creates the session factory and adds it to the ASM
• activates the object adapter
• waits for shut-down
Once shut-down is complete, the server:
• calls terminate on the reaper thread
• joins with the reaper thread

Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 12-20

Dealing with Stale Objects (7)
The client must call refresh every n seconds to keep the
session alive.
Instead of arbitrarily sprinkling calls to refresh through the
code, in the hope that they get executed often enough, run
a background thread:
• The refresh thread sits in a loop and calls refresh

periodically. To be safe, make the refresh interval a little
bit shorter than the server’s reap interval.

• The refresh thread provides a terminate method so the
client’s main thread can join with it when the time comes
to shut down.

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

13. Assignment 6
Object Life Cycle

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-1

Exercise Overview
In this exercise, you will:
• add life cycle operations to the file system server.

By the completion of this exercise, you will have gained
experience in how to implement thread-safe life cycle
operations.

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-2

Life Cycle

• In this exercise, you will add life cycle operations to the file
system server.

• The server is the thread-safe server you developed in
Assignment 5, so your implementation will need to be
thread-safe.

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-3

What You Need to Do
1. Examine the code in Server.java.
2. Look at the implementations of makeRootDir and the

DirectoryI constructors in Filesystem/DirectoryI.
3. Implement the createDir method.
4. Implement the createFile method.
5. Use the test client that is contained in Client.java to test

your create operations.
6. Implement the DirectoryI.destroy method.
7. Implement the FileI.destroy method.
8. Edit Client.java and enable the commented-out section

marked PART_2.

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-4

Thread Safety Modifications
• To prevent a race condition, we need to test, on entry to

every operation, whether the object has been previously
destroyed. Rather than repeat the same code in every
operation, we can bundle the test into a helper function.

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-5

createDir Implementation
• createDir calls checkDestroyed in case this directory has

been destroyed before the operation body started to
execute and then calls checkNameInUse to make sure that
clients cannot create two directories with the same
name.

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-6

createFile Implementation
• The createFile implementation is analogous to createDir.
• The FileI constructor does much of the work

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-7

DirectoryI.destroy Implementation
public void

destroy(Ice.Current c)

{

synchronized(this)

{

checkDestroyed();

_destroyed = true;

}

c.adapter.remove(c.id);

_parent.removeChild(_myID);

}

Assignment 6 Object Life Cycle
Copyright © 2005-2010 ZeroC, Inc. 13-8

FileI.destroy Implementation
The FileI.destroy implementation is analogous to
DirectoryI.destroy:

public void

destroy(Ice.Current c)

{

synchronized(this)

{

checkDestroyed();

_destroyed = true;

}

c.adapter.remove(c.id);

_parent.removeChild(_myID);

}

Glacier2
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

14. Glacier2

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-1

Lesson Overview

• Glacier2 is the Ice firewall traversal service. It allows
clients and servers to communicate even if they are
separated by a firewall.

• By the completion of this lesson, you will understand
how Glacier2 works, how to configure it correctly, and
how to modify your applications to work with Glacier2.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-2

Running an Ice Server Behind a Firewall
If a server is behind a firewall, clients can access the server if:
• The firewall opens an incoming port for clients.
• The firewall port-forwards incoming connections on that port to the real

server port.
• The server is configured to advertise the firewall’s host name and port

in its proxies instead of its own name and port by setting the
<adapter-name>. PublishedEndpoints property.

Problems of this approach:
• Each server requires a separate hole in the firewall.
• If clients need to connect to the server from the inside network as well

as the outside network, either:
• traffic is routed from the inside network to the firewall and back into

the inside network again (inefficient), or
• the server must publish internal and external addresses in its

proxies.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-3

Glacier2
Glacier2 is the Ice firewall-traversal service. It provides:
• firewall traversal for servers with no change to code or

configuration
• firewall traversal for clients with minimal code and configuration

changes
• callbacks from servers to clients via a bidirectional connection (with

minimal changes)
• authentication via user name and password (among others)
• session management
• secure communication via SSL
• request batching and filtering
Glacier2 requires only a single port to be opened in the firewall to
support an arbitrary number of clients and servers.
Alternatively, Glacier2 can also be the firewall for Ice servers. (No port
forwarding is required in this case.)

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-4

Glacier2 as a Firewall
Glacier2 acting as an Ice firewall, running on a machine with external
and internal interfaces:

• Clients on the external network connect to Glacier2’s external
interface, instead of directly connecting to the server.

• Glacier2 forwards the request to the server on the internal network.
• Glacier2 receives the server’s reply on the internal interface and

forwards the reply to the client via the external interface.

Glacier2Client Server

External Network Internal Network

5.6.7.8 10.1.1.2

10.1.1.1

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-5

Glacier2 Behind a Firewall
Glacier2 with a single internal interface running behind a firewall:

• Firewall is configured to port-forward 5.6.7.8:8000 to 10.1.1.1:4063.
• Client connects to firewall, which forwards traffic to Glacier2 on the

internal network.
• Glacier2 forwards the request to the server.
• Glacier2 receives the server’s reply and forwards the reply to the

firewall.
• The firewall forwards the reply to the client.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-6

Running Glacier2
Glacier2’s executable is called glacier2router.

UNIX daemon options:
• --daemon

• --noclose

• --nochdir

Use the iceserviceinstall utility to configure it as a Windows service.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-7

Glacier2 Configuration
To configure Glacier2 to be usable by clients, you must minimally set
the Glacier2.Client.Endpoints property.

It specifies the endpoint at which Glacier2 listens for incoming client
requests, for example:
Glacier2.Client.Endpoints=tcp -p 4063

• If Glacier2 cannot be accessed by hostile clients, TCP is usually the
appropriate protocol.

• If Glacier2 should allow access only for specific clients or if you
require secure communcations, you should specify SSL as the
protocol.
If you specify SSL, you must also configure the IceSSL plugin by setting:
Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=...
IceSSL.CertAuthFile=...
IceSSL.CertFile=...
IceSSL.KeyFile=...

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-8

Glacier2 Sessions
For each client, Glacier2 maintains a session. Clients must obtain a Router
proxy and use it to create a session:
module Glacier2 {

exception CannotCreateSessionException {
string reason;

};
exception PermissionDeniedException {

string reason;
};
interface Session {

void destroy();
};
interface Router extends Ice::Router {

// ...
Session* createSession(string userId,

string password)
throws PermissionDeniedException,

CannotCreateSessionException;
};

};

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-9

Client Configuration
You must set two properties for the client to use Glacier2:
• Ice.Default.Router=Glacier2/router:tcp \

-h 5.6.7.8 -p 4063

• Ice.ACM.Client=0

Ice.Default.Router specifies which Glacier2 router the client will
use. The endpoint details must match the configuration of Glacier2.
Ice.ACM.Client must be disabled by explicitly setting it to zero (or set
to a value larger than Glacier2’s session timeout). (ACM is enabled by
default.)
You should also disable retries by setting:
• Ice.RetryIntervals=-1

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-10

Creating a Password File
Glacier2 uses a password file to authenticate clients.
The password file contains one line for each user, with the user name and
encrypted password:
joe ZpYd5t1p4.d0Y

marc G8Y0Z67QgnIwI

You must configure the name and location of the password file by setting
Glacier2.CryptPasswords to the path name of the file.
You can use the openssl utility to create encrypted passwords:
$ openssl

OpenSSL> passwd

Password: openSesame

Verifying - Password: openSesame

ZpYd5t1p4.d0Y

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-11

Custom Authentication
You can implement a custom authentication mechanism by
implementing the PermissionsVerifier interface:
module Glacier2 {

interface PermissionsVerifier

{
idempotent bool checkPermissions(

string userId,
string password,
out string reason);

};

};

Set Glacier2.PermissionsVerifier to the proxy of this object.
If set, Glacier2 uses the specified verifier instead of the default
password mechanism.
checkPermissions must return true if authentication is successful,
false otherwise.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-12

The Admin Interface
The Admin interface allows remote shut-down of Glacier2:
module Glacier2 {

interface Admin
{

void shutdown();
};

};

The default identity of this interface is Glacier2/admin.
The endpoint at which this object listens is determined by the property
Glacier2.Admin.Endpoints.
If the property is not set, Glacier2 does not enable this interface.
Do not make this object available on a public network or, if you do, only
use an SSL endpoint!

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-13

Custom Object Identities
If you are running several Glacier2 processes, you will need to use
different object identities for each one.
• Glacier2.InstanceName

This property changes the identity of the Router and Admin objects in
Glacier2. For example:
• Glacier2.InstanceName=Fred

results in Fred/router and Fred/admin as the identities of the router
and admin objects.
If you change the identity, the client configuration must be changed
accordingly:
• Ice.Default.Router=Fred/router:tcp -h 5.6.7.8 -p 4063

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-14

Session Timeouts
Unless you configure a timeout, session state is maintained
by Glacier2 indefinitely.
To configure a timeout, set the property
Glacier2.SessionTimeout to the timeout value in seconds.
Any client activity resets the timeout. If there is no activity
on the session for the specified timeout, Glacier 2 destroys
the session.
If a session is destroyed, the client must create a new
session, reauthenticating itself.
A destroyed session results in a ConnectionLostException in
the client.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-15

Explicit Session Management
If you need to track session activity of clients, you can create an
external session:
• Implement the Glacier2 SessionManager interface
• Configure Glacier2 to use your session manager by setting

Glacier2.SessionManager to the session manager’s proxy.
• Implement the Glacier2 Session interface.
If you use explicit session management, your create operation can
return the session’s proxy to the client. In that case, the client receives
a non-null proxy (instead of the null proxy it gets for an internal
session).
Explicit session management is useful to, for example, log when clients
create and destroy a session.
Your create operation must handle re-creating a dropped session.
Note that, for SSL, there is also an SSLSessionManager.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-16

Supporting Callbacks

To support callbacks from server to client, Glacier2 must have an
endpoint in the internal network.
The Glacier2.Server.Endpoints property configures that endpoint.
The property does not require a port, only a host name or
IP address:

Glacier2.Server.Endpoints=tcp –h 10.1.1.1

No code changes are required in the server for callbacks.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-17

Supporting Callbacks (1)
Client requirements for callbacks:
• The client must have an object adapter (but no local endpoint is

necessary).
• Callback proxies created by this object adapter must use the router’s

server endpoint so that callback invocations from back-end servers are
sent to the router, and not sent directly to the client.

• To achieve this, the client must configure its callback object adapter
with a proxy for the router, using the <adapter-name>.Router
property or by calling createObjectAdapterWithRouter.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-18

Supporting Callbacks (2)
When a server makes a callback, Glacier2 has to work out which client
the callback should go to.
For each client session, Glacier2 generates a unique category. That
category must be used by a client in the identity of its callback objects.
Ice.RouterPrx r = communicator.getDefaultRouter();

Glacier2.RouterPrx router =

Glacier2.RouterPrxHelper.checkedCast(r);

String category = router.getCategoryForClient();

Ice.Identity id = new Ice.Identity();

id.category = category;

id.name = java.util.UUID.randomUUID().toString();

SomeObject p = new SomeObjectI();

adapter.add(p, id);

Because each client uses a different category, Glacier2 can examine
the category to determine to which client to forward a callback made by
the server.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-19

Helper Classes
Ice includes helper classes that provide functionality commonly needed
by Glacier2 clients:

• Glacier2.Application is a subclass of Ice.Application that
simplifies the use of Glacier2 in command-line applications.

• Glacier2.SessionFactoryHelper and
Glacier2.SessionHelper offer greater flexibility for graphical
clients.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-20

Glacier2.Application
The Glacier2.Application class should look familiar to users of
Ice.Application:

package Glacier2;

public abstract class Application extends Ice.Application {

public class RestartSessionException extends Exception { }

public Application();

public Application(SignalPolicy signalPolicy);

public abstract Glacier2.SessionPrx createSession();

public abstract int runWithSession(String[] args)

throws RestartSessionException;

public static Glacier2.RouterPrx router();

public static Glacier2.SessionPrx session();

// ...

}

Subclasses must implement createSession and runWithSession.

Glacier2
Copyright © 2005-2010 ZeroC, Inc. 14-21

Glacier2.Application (1)
Additional convenience methods simplify callbacks and session
management:

package Glacier2;

public abstract class Application extends Ice.Application {

// ...

public void sessionDestroyed();

public void restart()
throws RestartSessionException;

public String categoryForClient()
throws SessionNotExistException;

public Ice.Identity createCallbackIdentity(String name);

public Ice.ObjectPrx addWithUUID(Ice.Object servant);
public Ice.ObjectAdapter objectAdapter()

throws SessionNotExistException;

}

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

15. Assignment 7
Using Glacier2

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc. 15-1

Exercise Overview
In this exercise, you will
• modify the file system application to work with Glacier2.
By the end of this exercise, you will have gained experience
in how to configure Glacier2 and your applications, create
Glacier2 sessions, and communicate via Glacier2.

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc. 15-2

Using Glacier2
• In this exercise, you will modify the application you

developed in Assignment 6 to communicate via Glacier2.

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc. 15-3

What You Need to Do
1. The client needs to communicate with the server via Glacier2. Change the client to

use Glacier2.Application and add the missing code to create a Glacier2
session for the client.

2. Create a configuration file for Glacier2. For this exercise, because we do not have a
real firewall, you will run the client, server, and Glacier2 on the same machine. Use
the loopback address (127.0.0.1) for the configuration. Glacier2 should listen for
client requests on port 4063. Configure a session timeout of 30 seconds.

3. Create a password file for Glacier2 and modify the client source code to use the
correct user name and password.

4. Create a configuration file for the client to work with Glacier2.
5. Run Glacier2, the client, and the server. If you have set things up correctly, the

client will list the contents of the server’s file system.
6. Run Glacier2, the client, and the server with network tracing enabled. Examine the

port numbers that are used to convince yourself that the client indeed
communicates via Glacier2.

7. Change the client to use an invalid password and verify that Glacier2 correctly
rejects session creation.

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc. 15-4

Client Modifications

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc. 15-5

Client Configuration
Ice.Default.Router=Glacier2/router:tcp -h 127.0.0.1 -p 4063

Ice.ACM.Client=0

Ice.RetryIntervals=-1

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc. 15-6

Glacier2 Configuration
Glacier2.Client.Endpoints=tcp -h 127.0.0.1 -p 4063

Glacier2.CryptPasswords=passwords

Glacier2.SessionTimeout=30

Assignment 7 Using Glacier2
Copyright © 2005-2010 ZeroC, Inc. 15-7

Glacier2 Password File
You need one line in the password file with a user name
and encrypted password, for example:
joe 0WULk8FE9fmwo

The encrypted password in this file is “joe”.

IceGrid
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

16. The IceGrid

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-1

Lesson Overview
• IceGrid is the location and server activation service for

Ice.
• In this lesson you will learn to:

– use IceGrid to start servers on demand
– avoid hard-coding addresses and port numbers into proxies
– advertise application objects
– monitor the status of servers.

• By the completion of this lesson, you will understand
how IceGrid works, how to configure clients and servers
to take advantage of indirect binding and automatic
activation, and how to administer and troubleshoot
IceGrid.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-2

IceGrid
IceGrid is a location and activation service:
• IceGrid allows clients to use indirect proxies that do not contain host

names (or IP addresses) and port numbers.
• IceGrid can activate servers on demand, when clients first issue a

request.
• IceGrid allows well-known proxies to be advertised. Clients can

bootstrap using proxies that contain the name of well-known objects,
instead of endpoint information.

IceGrid also provides advanced features:
• Replication and load balancing with automatic failover
• Allocation of servers to clients
• Status monitoring
• Application distribution
• Centralized application deployment

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-3

IceGrid Components
IceGrid consists of a single registry and one or more nodes:

• The IceGrid registry is a database that keeps track of known
applications and the servers that make up each application.
The registry also knows details such as how to start each server,
what command-line options to provide at server start-up, and the
values of environment variables to be set for each server.
A single registry is used for a number of machines.

• An IceGrid node is essentially a server start-up and monitoring
process.
On each machine on which IceGrid-aware servers run, an IceGrid
node process is required.
Each IceGrid node communicates with its IceGrid registry to keep it
informed of the status of servers.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-4

IceGrid Architecture
A simple IceGrid architecture:

In this example, the machine running the registry does not run servers
or a node.
More commonly, the machine running the registry also runs a node
and servers.
If the machine running the registry also runs a node, you can (but need
not) collocate the registry and node into a single process by setting
IceGrid.Node.CollocateRegistry=1.

Registry Node

Server A

Node

Server B

Server C

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-5

Indirect Proxies
An indirect proxy has the form
<object-identity>@<adapter-id>

For example:
RootDir@fsadapter

The adapter ID is different from the adapter name that is used by the
server. The adapter ID is configured with the adapter property
<adapter-name>.AdapterId.

The advantage of indirect proxies is that they do not contain
endpoint information. If a server is moved to a different machine
or port, the client need not be updated.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-6

Client Configuration
To work with IceGrid, clients require only a single configuration item:

Ice.Default.Locator must be set to the proxy of the IceGrid registry:

Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost \

-p 4061

This property tells the client-side run time where it can obtain endpoint
information for indirect proxies.

IceGrid/Locator is the default identity of the registry’s locator service.

Note that the proxy for the locator cannot be an indirect proxy: the run
time requires one fixed endpoint at which it can resolve addresses.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-7

Registry Endpoints
The registry provides three endpoints:

• Client endpoint
Used by the administrative tools and by clients to resolve indirect proxies

• Server endpoint
Used by servers for status updates and registration

• Internal endpoint
Used by nodes and registry replicas

Two additional endpoints are used if IceGrid runs in conjunction with Glacier2.

Registry

Client endpoint
IceGrid.Registry.Client.Endpoints

Server endpoint
IceGrid.Registry.Server.Endpoints

Internal endpoint
IceGrid.Registry.Internal.Endpoints

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-8

Registry Configuration
You must set the following properties for the registry to work:

• IceGrid.Registry.Client.Endpoints

• IceGrid.Registry.Server.Endpoints

• IceGrid.Registry.Internal.Endpoints

• IceGrid.Registry.Data

Only the client endpoint requires a port number.

The server and internal endpoints only require a protocol, but not a host
or port.

The IceGrid.Registry.Data property defines the path to a directory in
which the registry places its database files.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-9

Node Configuration
Each node requires at least the following configuration:
• Ice.Default.Locator

Defines the registry’s location service proxy.
• IceGrid.Node.Endpoints

Defines the node’s endpoint for communication with the registry.
• IceGrid.Node.Name

A unique name for the node within the IceGrid domain.
• IceGrid.Node.Data

The location of the configuration files of servers started by the node.

IceGrid.Node.Name must be different for each node!

If you want to collocate the registry, you can set
IceGrid.Node.CollocateRegistry=1 on exactly one of the nodes in
the IceGrid domain.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-10

Starting an IceGrid Node
--nowarn: Don’t print security warnings.
--readonly: Start the master registry in read-only mode.

UNIX:
--daemon: Run as UNIX daemon
--noclose: Don’t close open file descriptors for daemon
--nochdir: Don’t change directory to /
--pidfile file: Write process ID into specified file.

Windows:
Use the iceserviceinstall utility to configure it as a Windows service.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-11

Starting the Registry
The registry command is icegridregistry.

It supports the --nowarn option as well as the same UNIX daemon
options as icegridnode:

--daemon, --noclose, --nochdir, --pidfile file

Use the iceserviceinstall utility to configure it as a Windows
service.

If you run a separate registry, and start nodes before starting the
registry, the nodes will periodically attempt to contact the registry and
establish a connection once the registry is running.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-12

Server Configuration
Server configuration is accomplished via XML files.
The XML descriptor at a minimum describes:
• the application name
• the node(s) on which the server(s) run
• for each server:

• a server ID
• the server executable file name

Additional descriptor elements can specify:
• the adapter name and protocol
• activation mode (manual, on-demand, etc.)
• command-line options
• property settings
• environment variables

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-13

Server Configuration (1)
A server element can have several option child elements:
<icegrid>

<application name="filesystem">

<node name="Node1">

<server id="fsserver" exe="/usr/bin/fsserver">

<option>--myoption</option>

<option>myoptarg</option>

<adapter name="Lab8" endpoints="tcp"/>

</server>

</node>

</application>

</icegrid>

Command-line arguments are appended to the executable in the order
specified.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-14

Server Configuration (2)
You can set properties as part of a server descriptor:

<icegrid>
<application name="filesystem">
<node name="Node1">
<server id="fsserver" exe="/usr/bin/fsserver">
<option>Server</option>
<property name="Ice.ServerIdleTime" value="20"/>
<property name="Ice.GC.Interval" value="60"/>
<adapter name="Lab8" endpoints="tcp"/>

</server>
</node>

</application>
</icegrid>

Property settings are written into a configuration file that is passed to the
server on start-up.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-15

Server Configuration (3)
You can set environment variables for the server:
<icegrid>

<application name="filesystem">

<node name="Node1">

<server id="fsserver" exe="/opt/app1/bin/server">

<env>LD_LIBRARY_PATH="/opt/app1/lib"</env>

<adapter name="App1" endpoints="tcp"/>

</server>

</node>

</application>

</icegrid>

For UNIX, use Bourne shell syntax for environment variables.
For Windows, use Windows syntax:
<env>PATH=%PATH%;C:/opt/Ice/lib</env>

$PATH (and $${PATH}) substitute the setting of an environment variable.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-16

Server Configuration (4)
Each server element must have an adapter element for each adapter to
which clients bind indirectly.
<icegrid>

<application name="filesystem">

<node name="Node1">

<server id="fsserver" exe="/usr/bin/fsserver">

<adapter name="Lab8" endpoints="tcp"/>

</server>

</node>

</application>

</icegrid>

The adapter element must minimally specify the adapter name (as used
by the server).
The endpoint usually only specifies a protocol, so the operating system
can assign a port. However, you can specify a port as well, if you want the
server to use a specific port.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-17

Server Configuration (5)
If you specify an id attribute, the server’s externally visible
adapter ID becomes that ID:

<icegrid>
<application name="filesystem">
<node name="Node1">
<server id="fsserver" exe="/opt/app1/server">
<adapter name="Lab8" id="fsa" endpoints="tcp"/>

</server>
</node>

</application>
</icegrid>

The client’s indirect proxy now becomes:
RootDir@fsa

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-18

Command-Line Administration
You can maintain the registry from the command line with
icegridadmin.
The program requires the property Ice.Default.Locator to be
set so it can find the registry.
icegridadmin allows you to:
• Add, update, and remove applications
• Start, stop, and check the status of servers
• Add, remove, and check the status of adapters
• Add, remove, and list well-known objects

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-19

icegridadmin Application Commands
• application add file.xml

Add the application described in file.xml.
• application remove name

Remove the application name.
• application update file.xml

Update an already deployed application with file.xml.
• application describe name

List details of application name.
• application list

List all deployed applications.
• application diff file.xml

Show differences between deployed application descriptor and
file.xml.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-20

icegridadmin Node Commands
• node list

List all nodes.
• node describe name

Show information about node name.
• node ping name

Test whether node name is running.
• node show name [stdout | stderr]

Show the node’s stdout and/or stderr output.
• node load name

Show the load of node name.
• node shutdown name

Shut down the node name.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-21

icegridadmin Server Commands
• server list

List all server IDs.
• server describe id

Show details of server id.
• server enable id

Enable server id.
• server disable id

Disable server id. (A disabled server cannot be started, either on
demand or explicitly.)

• server stdout id message

Write message on server id’s standard output.
• server stderr id message

Write message on server id’s standard error.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-22

icegridadmin Server Commands (1)
• server state id

Show the state of the server id (running, inactive, enabled or
disabled).

• server pid id

Show the process ID of server id.
• server signal id signal

Send signal signal to server id (UNIX only).
• server start id

Start server id.
• server stop id

Stop server id.
• server remove id

Remove server id.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-23

icegridadmin Server Commands (2)
• server show [options] id [stdout | stderr | log]

Print text from the server’s stdout, stderr, or specified log file.
• server properties id

Show the run-time properties of the server id.
• server property id name

Show the setting of the property name for the server id.
• server patch id

Apply updates to the server id via IcePatch2.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-24

Server Activation and Deactivation
The activation attribute of a server element can be set to “manual”,
“on-demand”, “session”, or “always”. (The default is “manual”.)
<server id="fsserver" exe="java" activation="on-demand">

• If set to “manual”, the server must be started using the
icegridadmin server start command.

• If set to “on-demand”, IceGrid transparently activates the server
when a client resolves the first indirect proxy to an object in the
server.

The easiest way to deactivate a server is to set Ice.ServerIdleTime
to a timeout in seconds.
If the server is idle for the specified timeout, its object adapters shut
down and waitForShutdown completes.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-25

The Process Administrative Facet
module Ice {

interface Process {
idempotent void shutdown();
void writeMessage(string message, int fd);

};

};

IceGrid adds a Process facet to an adapter that runs at the server’s
Ice.Admin.Endpoint (127.0.0.1 by default). The server stop
command calls shutdown on the facet and the implementation of that
operation calls shutdown on the communicator.
This allows the server to shut down when asked to do so by
icegridadmin.
You can specify a different admin endpoint for the server by setting the
Ice.Admin.Endpoints property for the server.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-26

Server Environment
When you use application add or application update,
icegridadmin writes a configuration file for a server.

The configuration file is stored in
<node-dir>/servers/<server-id>/config/config

For example:
Node1/servers/fsserver/config/config

This configuration file contains any property settings you specified in
the deployment descriptor.

When IceGrid starts a server, it passes
--Ice.Config=Node1/servers/fsserver/config/config

as an option to the server, so the server gets the correct configuration.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-27

Server Code Changes
The server’s object adapter obtains its endpoints from the property
settings generated by the IceGrid node.
When creating an object adapter, use:
communicator.createObjectAdapter("<adapter-name>")

without specifying any endpoints.
The adapter name must match the name attribute of the adapter
element in the server’s deployment descriptor.
The adapter will listen on the endpoints specified by the adapter
element, which are transferred to the <adapter-name>.Endpoints
property.
The adapter informs IceGrid of its endpoints so the registry can resolve
indirect proxies.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-28

The Graphical Admin Tool
Ice provides a GUI tool that provides most of the functionality of
icegridadmin.
The tool is provided as a stand-alone jar file in the Ice distribution.
To start the tool:

java -jar IceGridGUI.jar

The tool prompts for the value of Ice.Default.Locator so it can find
the registry.
For the GUI tool to work, either:
• set IceGrid.Registry.CryptPasswords
or set one of the following properties to a custom verifier:
• IceGrid.Registry.AdminPermissionsVerifier (for TCP)
• IceGrid.Registry.AdminSSLPermissionsVerifier (for SSL)

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-29

Well-Known Objects
The registry maintains a table of well-known objects. The table stores a
name–proxy pair. You can populate the table
• via the deployment descriptor
• via the icegridadmin or IceGridGUI.jar tools
• programmatically, via the registry’s Slice interface
A proxy for a well-known object consists of only an identity.
Minimally (using the default protocol), a proxy is:

RootDir

You can add an object element as a child of an adapter element to
declare a well-known object:
<adapter name="Lab8" id="fsadapter“ endpoints="tcp">
<object identity="RootDir"/>

</adapter>

RootDir and RootDir@fsadapter are now equivalent.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-30

Well-Known Proxies (1)
module IceGrid {
interface Admin {
void addObject(Object* obj)

throws ObjectExistsException,
DeploymentException;

void updateObject(Object* obj)
throws ObjectNotRegisteredException,

DeploymentException;
void addObjectWithType(Object* obj, string type)

throws ObjectExistsException,
DeploymentException;

void removeObject(Ice::Identity id)
throws ObjectNotRegisteredException,

DeploymentException;
idempotent ObjectInfoSeq getAllObjectInfos(

string expr);
idempotent ObjectInfo getObjectInfo(Ice::Identity id)

throws ObjectNotRegisteredException;
};

};

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-31

Security Considerations
Do not permit the server, node, and internal endpoints to
be accessible in hostile environments.
In hostile environments, you must use SSL and appropriate
certificates to secure these endpoints.
• Under UNIX, if you run the node as a user other than

root, servers are started with that user ID.
• If you run the node as root:

• If you do not specify a user attribute for the server
descriptor, the server runs as nobody.

• Otherwise, it runs as the specified user.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-32

Troubleshooting
You can set various tracing properties to diagnose problems:
IceGrid.Registry.Trace.Adapter=3

IceGrid.Registry.Trace.Node=2

IceGrid.Registry.Trace.Server=1

IceGrid.Registry.Trace.Object=1

IceGrid.Registry.Trace.Locator=2

IceGrid.Node.Trace.Activator=3

IceGrid.Node.Trace.Adapter=3

IceGrid.Node.Trace.Server=3

These properties produce trace messages for the corresponding area of interest.
If you run the registry/node in a window from the command line, trace output is
written to the terminal.
Beware of relative pathnames for executables and files.
Failure to start a server can be related to LD_LIBRARY_PATH.
Check for core files in the node’s working directory.

IceGrid
Copyright © 2005-2010 ZeroC, Inc. 16-33

Other Features
IceGrid provides a number of other features (not further covered here):
• Templates

Templates are generic deployment descriptors so you can describe a whole
family of servers with a single descriptor.

• Server allocation
You can reserve a specific number of server instances for allocation and
exclusive use by particular clients.

• Replication
You can replicate objects across a number of servers; if one server is down,
IceGrid transparently chooses a working replica in a different server on
behalf of clients. You can also replicate the IceGrid registry to achieve fault
tolerance.

• Load balancing
For replicated objects, IceGrid can dynamically load balance among the
objects.

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

17. Assignment 8
Using IceGrid

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-1

Exercise Overview
In this exercise, you will:
• modify the file system application to work with IceGrid.
By the completion of this exercise, you will have gained
experience in how to run IceGrid, deploy a server, and use
indirect proxies in clients to bind indirectly to Ice objects.

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-2

Using IceGrid
• In this exercise, you will modify the application you

developed in Assignment 6 to use IceGrid.

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-3

What You Need to Do
1. Run an IceGrid registry in a window.
2. Run an IceGrid node in a separate window.
3. Create a deployment descriptor for your server in filesystem.xml.
4. Run icegridadmin in a separate window.
5. The server in Server.java does not create an object adapter. Add the

missing code to create the adapter.
6. Start the server using icegridadmin.
7. Verify that you can cleanly stop the server using icegridadmin.
8. The client requires configuration to bind indirect references. Place the

missing configuration for the client into config.client.
9. Modify the client source code to specify an indirect reference for the root

directory that matches the deployment of your server.
10. Run the client with protocol tracing and examine the messages that are

exchanged between the client and the registry.
11. Run the IceGridGUI tool and use it to modify the server’s deployment to

advertise the root directory as a well-known object with the identity “RootDir”.

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-4

Registry Configuration
IceGrid.Registry.Client.Endpoints=tcp -p 4061

IceGrid.Registry.Server.Endpoints=tcp

IceGrid.Registry.Internal.Endpoints=tcp

IceGrid.Registry.Data=registry

IceGrid.Registry.AdminPermissionsVerifier=IceGrid/Nu
llPermissionsVerifier

IceGrid.Registry.Trace.Locator=2

IceGrid.Registry.Trace.Adapter=3

IceGrid.Registry.Trace.Node=2

IceGrid.Registry.Trace.Server=1

IceGrid.Registry.Trace.Object=1

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-5

Node Configuration
Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

IceGrid.Node.Endpoints=tcp

IceGrid.Node.Name=Node

IceGrid.Node.Data=node

IceGrid.Node.Trace.Activator=3

IceGrid.Node.Trace.Adapter=3

IceGrid.Node.Trace.Server=3

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-6

Deployment Descriptor
<icegrid>

<application name=“filesystem">

<node name="Node">

<server id="fsserver" exe="java" activation="on-demand">

<adapter name="Lab8" id="fsadapter" endpoints="tcp">

</adapter>

<property name="Ice.ServerIdleTime" value="20"/>

<option>Server</option>

</server>

</node>

</application>

</icegrid>

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-7

Admin Configuration
• Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-8

Server Source Modification
The server must call createObjectAdapter (instead of
createObjectAdapterWithEndpoints) to create the adapter:

Ice.ObjectAdapter adapter =
communicator().createObjectAdapter("Lab8");

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-9

Client Configuration
• Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

Assignment 8 Using IceGrid
Copyright © 2005-2010 ZeroC, Inc. 17-10

Client Modification
• For step 9, the client needs to use the proxy:

RootDir@fsadapter.
• For step 11, the proxy is:

RootDir.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc.

Ice Programming with Java

18. The Ice Run Time in Detail

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-1

Lesson Overview
• This lesson:

– takes closer look at the Ice run time.
– explains some advanced implementation techniques

that allow you to take precise control of the
performance–footprint trade-off for a server.

• By the completion of this chapter, you will know how to
build realistic server applications that can scale to
millions of objects.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-2

The Ice::Communicator Interface
Ice::Communicator is the main handle to the Ice run time.
The communicator is associated with a number of resources:
• Client- and server-side thread pool
• Configuration properties
• Object factories to instantiate Slice classes
• A logger object to redirect warning and error messages
• A statistics objects to collect statistics on traffic volumes
• A default router (used by Glacier2)
• A default locator (used by IceGrid)
• A plug-in manager to load plug-ins (such as IceSSL)
• One or more object adapters
You can have more than one communicator in a process (for example, to
use different configuration properties with each).

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-3

The Ice::Communicator Interface (1)
module Ice {

local interface Communicator {
string proxyToString(Object* obj);
Object* stringToProxy(string str);

ObjectAdapter createObjectAdapter(string name);
ObjectAdapter createObjectAdapterWithEndpoints(

string name,
string endpoints);

void shutdown();
void waitForShutdown();
void destroy();
// ...

};
// ...

};

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-4

Creating a Communicator
final class InitializationData implements Cloneable
{

public java.lang.Object clone();
public Properties properties;
public Logger logger;
public Stats stats;
public ThreadNotification threadHook;
public ClassLoader classLoader;
public Dispatcher dispatcher;

}
static Communicator initialize();
static Communicator initialize(String[] args);
static Communicator initialize(StringSeqHolder ah);
static Communicator initialize(InitializationData id);
static Communicator initialize(String[] args,

InitializationData id);
static Communicator initialize(StringSeqHolder ah,

InitializationData id);

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-5

Object Adapters
Object adapters link the server-side run time to the server-side
application code.
Each server has at least one object adapter.
Each object adapter provides one or more transport endpoints at
which it listens for incoming requests.
Each object adapter provides an Active Servant Map to dispatch
incoming requests.
Operations that manipulate the ASM:

Object* add(Object servant, Identity id)

Object* addWithUUID(Object servant)

Object remove(Identity id)

idempotent Object find(Identity id)

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-6

Servant Locators
By default, if the identity for an incoming request cannot be found in the
ASM, the run time returns ObjectNotExistException to the client.
You can register one or more servant locators with an object adapter.
The job of a servant locator is to locate or create a servant for a
request.
local interface ServantLocator

{
Object locate(Current curr,

out LocalObject cookie);
void finished(Current curr,

Object servant,
LocalObject cookie);

void deactivate(string category);

};

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-7

Threading Guarantees for Servant Locator
Guarantees provided by the Ice run time:
• Every call to locate is balanced by a call to finished.
• locate, the servant operation, and finished are called by the

same thread. (When using AMD, finished may be called by a
different thread.)

• No call to locate or finished can arrive after deactivate is
called, and deactivate is not called concurrently with locate
or finished.

Note that:
• Multiple calls to locate can proceed concurrently.
• Multiple calls to finished can proceed concurrently.
• locate and finished can proceed concurrently.
Concurrency can involve the same object ID!

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-8

Servant Locator Registration
local interface ObjectAdapter {

void addServantLocator(ServantLocator locator,
string category);

ServantLocator findServantLocator(string category);

// ...
};

Note that a servant locator is registered for a specific category.
• If the target identity of an incoming request has a matching category,

the run time calls the corresponding servant locator.
• Otherwise, if you have servant locator with an empty category, the

run time calls that servant locator (known as the default locator).

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-9

Call Dispatch Rules
1. Look for the identity in the ASM. If the ASM contains an entry,

dispatch the request. Finished.
2. If the category of the request is non-empty, look for a matching

servant locator.
• If a matching locator is found, call its locate operation. If locate

returns a servant, dispatch the request; otherwise, throw
ObjectNotExistException. Finished.

• If no matching locator is found, continue with Step 3.
3. Look for a default servant locator.

• If a default servant locator is found, call its locate operation. If
locate returns a servant, dispatch the request; otherwise, throw
ObjectNotExistException. Finished.

• If no default locator is found, continue with Step 4.
4. Raise ObjectNotExistException in the client.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-10

Implementing Servant Locators
Each servant locator must be derived from the Ice::ServantLocator
base class:
public class MyServantLocator implements Ice.ServantLocator

{

public Ice.Object

locate(Ice.Current c, Ice.LocalObjectHolder cookie);

public void

finished(Ice.Current c,

Ice.Object servant,

Object cookie);

public void

deactivate(String category);

}

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-11

Implementing locate
public Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{

MyServantDetails d = null;
try {

d = DB_lookup(c.id.name);
} catch (DB_error e)

return null;
}
return new MyInterfaceI(d);

}

This implementation locates the state for a servant in a database.
Note that, for each request, a new servant is created.
• Depending on the relative costs of operations and initialization, this

may be inefficient.
• Without interlocks, this can result in multiple servants for the same

Ice object, if requests arrive concurrently.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-12

Information Provided to locate
locate is passed the Ice::Current object for the incoming
request.
Ice::Current contains the identity for the incoming request,
and the operation name.
Typically, this is all the information you need to locate the
correct servant for a request.
Note that locate must usually instantiate a servant, but the
type of the servant’s interface is not part of the Current
object.
If you have locators for servants with different interfaces,
you must register a separate locator for each interface
type.
The category can be any identifier you choose; you can
use the type ID of the servant’s interface, or any other
suitable identifier.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-13

Lazy Initialization
Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{

MyServantDetails d = null;
try {

d = DB_lookup(c.id.name);
} catch (DB_error e)

return null;
}
myInterfaceI servant = new MyInterfaceI(d);
try {

c.adapter.add(servant, c.id);
} catch (Ice.AlreadyRegisteredException ex)

return c.adapter.find(c.id);
}
return servant;

}

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-14

Creating Proxies
You can create a proxy for an Ice object without
instantiating a servant for that object:
local interface ObjectAdapter {

Object* createProxy(Identity id);
// ...

};

This is more efficient than instantiating a servant and
adding it to the ASM in order to obtain its proxy.
createProxy is particularly useful for list operations that
return a large number of proxies to clients.
When used in combination with servant locators, this
avoids having to instantiate a servant for each Ice object
returned in a list.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-15

Default Servants
A servant that implements many different Ice objects simultaneously is
called a default servant.
Default servants are useful for servers that act as a front end to backend
storage, such as servers that sit in front of a database and present
database records as Ice objects.
Ice provides an API similar to servant locators that makes it easy to
register your default servants.
Each operation implementation uses the object identity for the request to
determine which servant state to operate on.
Default servants allow unlimited scalability with very small memory
footprint.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-16

Default Servants (1)
With a default servant, the implementation of each operation:
• uses the Current object to get the object identity
• uses the name member of the identity to locate the state of the Ice

object (for example, by using it as the key of a database table). If
no state can be found for the identity, the operation throws
ObjectNotExistException.

• Implements the operation to operate on the retrieved state.
This makes the server completely stateless. Each operation
retrieves the state, operates on it, and forgets the state again.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-17

Default Servants (2)
If you use default servants, you should override the ice_ping operation
on the skeleton to do the right thing.
The inherited default implementation always succeeds. However, if you
use a default servant, a client may ping an Ice object that truly does not
exist.
void
ice_ping(Ice.Current c)
{

try {
DB_lookup(c.id.name);

} catch (DB_error ex)
throw new Ice.ObjectNotExistException() ;

}
}

You need to override ice_ping only if clients actually use it (but it is
good practice to do so).

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-18

Hybrid Approaches and Caching
You can combine the ASM and a default servant:
• Put performance-critical servants that are accessed frequently into the

ASM.
The implementation of these servants should cache all servant state in
memory to get good performance.

• Use a default servant for less frequently-accessed servants.
The implementation of these servants retrieves state on demand from
back-end storage, to keep memory consumption low.

This approach is useful if the access patterns to servants are known in
advance and static.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-19

Evictors
An evictor is a servant locator that instantiates servants up to some
predefined maximum number of instances:
• If a request arrives for a servant that is not yet in memory, the

servant locator instantiates a new servant and returns it, provided
that the limit of servants is not exceeded.

• If a request arrives for a servant that is already in memory, the
servant locator returns that servant.

• If a request arrives for a servant that is not in memory, and the
number of servants is already at the limit, the servant locator
destroys an existing servant and instantiates a new one.
The servant that is evicted is the least-recently-used servant.

Evictors allow control of the footprint–performance trade-off in a server.
By choosing the evictor size appropriately, you get good performance
for the most frequently-used servants, with acceptable memory
consumption.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-20

Evictors (1)
An evictor after requests for object identities 1 to 5 have
arrived (in that order):

The evictor has instantiated five servants. Servant 1 is the
least recently-used servant.

Evictor 5 4 3 2 1

Servants

Evictor Queue

Head Tail

5 4 3 2 1

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-21

Evictors (2)
Same evictor after a client accesses servant 3:

The evictor has dequeued the entry for servant 3 and
placed it at the head of the evictor queue, making servant 3
the most recently-used servant.

Evictor 3 5 4 2 1

Servants

Evictor Queue

Head Tail

5 4 3 2 1

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-22

Evictors (3)
Same evictor after a client accesses servant 6:

The least recently-used servant (servant 1) has been
removed from the evictor and is destroyed once it no longer
services a request.

Evictor 6 3 5 4 2

Servants

Evictor Queue

Head Tail

6 5 4 3 2

1

1

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-23

Evictor Implementation
Implementation goals:
• Reusable, so it can be used for any type of servant.
• Non-intrusive to servant implementation. (Servant implementation

should not know about evictor.)
• High performance for both locating a servant and evicting a servant.
• Easily configurable evictor size.
Basic implementation:
• Use a map to store identity–servant pairs for quick lookup.
• Use a queue to maintain LRU order. Queue entries point at map

entries. Enqueing, dequeuing, and maintaining LRU order can be
performed in constant time.

• Implementation is inherited from a base class.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-24

Evictor Implementation (1)
The private part of EvictorBase:
• stores the cookie that is returned from add (so it can be

passed to evict) in a map,
• stores an iterator into the evictor queue that marks the

position of the servant in the queue,
• stores a use count for each servant that is incremented

when an operation is dispatched, and decremented
when an operation completes.

The Ice Run Time in Detail
Copyright © 2005-2010 ZeroC, Inc. 18-25

Using EvictorBase
public class MyInterfaceEvictor extends EvictorBase
{

public Ice.Object
add(Ice.Current c, Ice.LocalObjectHolder cookie)
{

MyServantDetails d = null;
try {

d = DB_lookup(c.id.name);
} catch (DB_error ex)

return null;
}
return new MyInterfaceI(d);

}

public void
evict(Ice.Object servant, Object cookie)
{
}

}

	Java_SW_1_IntroIce
	Java_SW_2_Slice
	Java_SW_3_Assignment1
	Java_SW_4_ClientSide_SliceJavaMap
	Java_SW_5_Assignment2
	Java_SW_6_ServerSide_JavaMapping
	Java_SW_7_Assignment3
	Java_SW_8_Properties_and_Configuration
	Java_SW_9_Assignment4
	Java_SW_10_Multi-Threaded_Ice
	Java_SW_11_Assignment5
	Java_SW_12_Object_Life_Cycle
	Java_SW_13_Assignment6
	Java_SW_14_Glacier2
	Java_SW_15_Assignment7
	Java_SW_16_IceGrid
	Java_SW_17_Assignment8
	Java_SW_18_IceRunTime

